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�is doctoral dissertation is concerned with the physics of strongly interacting cold al-

kali atoms at low temperatures near a Feshbach resonance. In Chapter , we establish a

connection between super�uid He and the BCS theory of superconductivity, and cold

alkali atoms. We give the history of cold atoms, describing the signi�cant achievements,

pitfalls and challenges.

InChapter , we explore the thermodynamics of strongly interacting Bosonic atoms.

We explore the stability of atomic Bosonic condensates near a Feshbach resonance. We

show that the experimentally attained atomic condensate is a saddle point of the free en-

ergy, but the kinetics of its decay is slow. We also show that there is a second, higher den-

sity condensate branch which has an Ising-like phase transition to a molecular (paired)

condensate when ramped across the Feshbach resonance. We argue that due to the high

density, inelastic -body processes possibly render this transition unobservable.

In Chapter , we explore the thermodynamics of Fermionic atoms near a Feshbach

resonance. We determine the zero-temperature (T ≪ TF) pair propagator for a spin-

imbalancedmixture of up anddown spin Fermions, and use it to show that such amixture

becomes completely polarized at µ↓ = −.µ↑. We also determine the�ouless criterion

for super�uidity in a spin-imbalanced Fermi mixture, and construct a phase diagram of

such a system at zero temperature. We then compare our results with experiments per-

formed by two di�erent groups. We �nd that interaction modi�cations to the minority

spin self-energy inferred from our analysis is roughly double those observed in experi-

ments.�is discrepancy is consistent with the expected accuracy of the theory.



InChapter , we extend our analysis of the preceding chapter to calculate the surface

tension of an interface between spin-polarized Fermions in the normal and super�uid

phases. We show that, as expected, this surface tension decreases with increasing tem-

perature and vanishes at a tricritical temperature, above which the transition becomes

continuous. We also calculate the thickness of the interface; at T = , this is a few in-

terparticle spacings, but diverges at the tricritical temperature. To compare with a set

of relevant experiments, we also develop a phenomenological model for surface tension,

and conclude that experimental surface tensions are an order of magnitude higher than

what our microscopic calculation yields. We hypothesize possible mechanisms.

In Chapter , we calculate the �nite temperature phase diagram of a Bose-Fermi

mixture produced from a spin-imbalanced two-component Fermi gas deep in the BEC

phase. We show that there is a discontinuous transition between the super�uid and nor-

mal phase, with an entropy of mixing su�cient to cool the system down. We detail the

construction of such a cooling scheme to cool a Fermi system below what is possible

evaporatively, and �nd that the cooling e�ciency is comparable to typical evaporative

schemes.

In Chapter , we shi� our focus from thermodynamics to dynamics. We calculate

shi�s in the energy spectrum of a spin-balanced Fermionic super�uid of Cooper pairs

due to the presence of energetically close states coupled by a Feshbach resonance.�ese

shi�s manifest themselves as clock-shi�s in the radio-frequency spectrum of the super-

�uid. In addition to a broad asymmetric peak coming from the break-up of Cooper pairs,

we �nd (for certain parameter ranges) a sharp, symmetric “bound-bound” spectral line

coming from the conversion of Cooper pairs in one channel to pairs or molecules in an-

other channel. Our theory shows remarkable quantitative agreement with experiments

performed by an experimental group.



BIOGRAPHICAL SKETCH

Sourish Basuwas born toAmarNath and Sumitra Basu on th September, . Growing

up in a house heavy with the musty smell of old books, he spent a signi�cant portion of

his childhood in the attic with his nose buried1 in yellowed, moth-eaten, termite-ridden

publications which he wasn’t allowed to bring down for fear of infecting the non-decrepit

volumes downstairs. Quite naturally, most of his worldly knowledge was derived from

a combination of various Gold Key comics (which these days go by the fancier name of

“graphic novels”), Arthur Conan Doyle, pre-WWI atlases and�e Eagle Annual (the last

issue came out in ). His present predilection for science stems partly from trying out

various experiments from th century chemistry textbooks in his mom’s kitchen (much

to her chagrin, and yes, sometimes with messy results).

Growing up in a typical middle class family in India, the importance of academic

achievementwas drilled into his head at a very early age.�ismade him a diligent student

in school, although he remembers being rather bored by it2. His parents wereOKwith him

doing anything else so long as hemaintained his grades, so he felt no guilt in hiding under

the bed with a Russian fairy tale during his study hours3. Sourish remembers his school

years chie�y because of the close friends he made; he still maintains regular contact with

some of them. It was also around this time that his allegiance switched from chemistry

to physics, thanks largely to a set of “Physics for Everyone” books4 by L.D. Landau and

A.I. Kitaigorodsky, given to him by his brother.

1Literally. Even today, one of the �rst things Sourish does with a new book is to smell the pages,
sometime surreptitiously.
2in particular, byMathematics. He remembers receiving dismal grades, o�en because he didn’t see the

point of multiplying �ve digit numbers or �nding square roots by hand, and therefore made up most of
the answers. It wasn’t until high school that he started enjoying mathematics, for which he freely credits
his teachers Dipankar Sarkar and Pinaki Mitra, the latter possibly the best teacher he’s had. Ever.
3Unlike typical American households, he didn’t have a room of his own.
4Since the United States was Pakistan’s sugar daddy at the time, India had allied with the U.S.S.R., and

the Soviets used to supply India with really, really cheap Russian books.
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Fast forward four years, and Sourish was o� to study applied physics at the Indian

Institute of Technology (IIT), Bombay5. In college, besides learning physics, mathematics

and electrical engineering, he also dabbled in acting and writing. One of his fondest

memories from college involves staying up nights with a couple of friends, writing two-

hours plays for a Performing Arts Festival.

In hindsight, he’s not sure why he came to Cornell University for his Ph.D. He had

wanted to go toUniversity of Chicago, had received a handsome two-year fellowship, and

had almost accepted it (he was about tomail in his acceptance).�en late one night in the

computer lab, two of his friends – who had been accepted by Cornell – told him “forget

Chicago, come with us to Cornell, we’ll have fun.” And he came to Cornell.

Sourish o�en thinks that if he’d stuck to physics for the most part of his stay at Ithaca,

he would have �nished at least a year earlier. But he didn’t, and thanks his friends, his uni-

versity, and his adviser profusely for it6. Instead, he took classes in photography, Spanish,

science writing, wines, and regrets that he did not have time to take a course in cooking.

�anks to Ithaca’s centrally isolated location, he also took up biking, backpacking and

Nordic skiing. On his way out, he thinks that he’ll probably miss Gimme! Co�ee more

than his o�ce in Clark Hall.

While writing for the Scienti�c American during the summer of , Sourish picked

up an interest in climatemodeling.�at interest eventually led him toUtrecht, where he’s

going to incorporate satellite data fromGOSAT into carbon cycle models for the Nether-

lands Space Agency. He’s looking forward to wearing clogs and shoving raw Herring

down his throat, while doing a bit of science in his spare time.

5He’s quite sure that had he graduated high school a year later, he would have chosen to study math-
ematics instead. As it happens, the Indian Statistical Institute started their Bachelor of Mathematics pro-
gram the year a�er he went o� to IIT.

6When he wanted his adviser’s permission (i.e., signature) to take a photography class, all his adviser
said was “try not to inhale a lot of chemical fumes.” For the Spanish classes, he was told, “I think that’s a
useful language to learn.”
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CHAPTER 

INTRODUCTION

It’s not everyday that you see a new state ofmatter. While we can be reasonably certain

that people were aware of the three classical states of matter – solid, liquid and gas –

several thousand years ago, it wasn’t until  that the fourth phase – plasma – was

identi�ed by William Crookes in his now-famous vacuum tube. Why did plasma have

to wait so long to be discovered, despite being the most common phase of matter in the

universe []? Quite simply, the earth is just too cold, and�ales could never produce a

strong enough electric �eld with his fur and amber to produce plasma1. So man had to

wait many centuries before he had the technology to generate thousands of volts in the

laboratory and see a plasma.

If the earth is too cold to see swirling tongues of plasma all around us2, could it also be

too warm to see a few other phases of matter? Yes, said London and Tisza in  [], in

tying the strange properties of super�uid He to Bose and Einstein’s statistics for integral-

spin particles []. Liquid He, cooled below . K, transforms into a new (��h?) phase

of matter – a so-called Bose condensate – with unusual properties such as zero viscosity,

in�nite thermal conductivity, and propagating temperature waves3.

1�ere was plasma on earth, of course, and quite visible, too; but the mysteries of lightning and St.
Elmo’s �re could only be deciphered a�er Crooke’s experiment.
2�e temperature at which hydrogen is completely ionized into plasma, for example, is about

,K, unheard of on earth, but completely commonplace in the solar corona.
3In this context, I’m reminded of one of Wolfgang Ketterle’s stories on how he explains his work to

kindergarten kids.
“Suppose you were all living on the sun. Since everything on the sun is gaseous,” he explains (omitting

the plasma for the kids’ bene�t), “you, your friends and your family would all be made of gas. In fact,
you wouldn’t even know that solids or liquids even existed! Now say one of you got real smart, and built
a refrigerator. You took some of the gas around you and stuck it into the fridge. If your fridge was good,
some time later you’d open the fridge and �nd – lo and behold – a liquid! Now, if you’d built a really good
fridge, a�er some more time, you’d see a solid! So just by building a good fridge, you’d discover matter in
new forms that you had never seen before because you lived in a warm place. I do something very similar;
I build really good fridges, stick some things in, and watch them change into newer forms of matter which
we can’t see around us simply because the earth is too warm!”
“Inevitably,” he says, “one of them asks, ‘If you live on the sun, don’t you have towear a lot of sunscreen?”’





While liquid He provided the earliest example of a Bose condensate, it was quite far

from an ideal Bose gas. Interactions between He atomswere quite strong (it was, a�er all,

a liquid), to the point where many physicists – including such giants as Lev Landau and

GeorgeUhlenbeck –were not convinced that the phenomenonobserved in Hewas really

Bose condensation []. Contrary to what happens in a noninteracting Bose gas, a �nite

fraction of atoms were non-condensed even at T = , an interaction e�ect we today call

“condensate depletion.” Most importantly, the super�uid density fromLandau’s two-�uid

model of He is not equal to the condensate density, which itself is only about % of the

Boson density []. For all these reasons, even as early as the s, there was considerable

interest in producing an “ideal” Bose gas at low temperatures.

To bridge the gap between BEC in an ideal Bose gas and super�uidity in He, Bo-

goliubov attacked the problem of excitations in an interacting Bose condensate []. He

showed that BEC was not signi�cantly altered by weak interactions in a dilute Bose gas,

and derived the long-wavelength phonon spectrum that was assumed by Landau to ex-

plain dissipationless �ow within his two-�uid model []. When Bardeen, Cooper and

Schrie�er used Bogoliubov’s formulation to explain dissipationless �ow of electric cur-

rent in conventional superconductors as well [], scientists realized that superconduc-

tivity in metals was somehow the result of a Bose condensation []. Over the next 

years, it became clear that the BCS theory of superconductivity really involved a “BEC

of Cooper pairs” []; two (Fermionic) electrons formed a (Bosonic) Cooper pair, which

made up a dilute non-overlapping Bose gas. A Bose condensation of this gas below its

critical temperature resulted in the super�ow of (charged) Cooper pairs, and hence in

resistance-less conduction [].

Since physicists were already thinking of ways to produce an ideal Bose gas, it was

natural to ask whether an “ideal” composite Bose gas made up of Fermions could be pro-





duced as well. Such an idea was alluring for quite a few reasons. First, while Cooper

pairing between two Fermions did not require them to be charged4, the only Cooper pair-

ing known for a long time was between two electrons. �us, there was some interest

in producing Cooper pairs out of neutral Fermions, to study them without the added

complication of charge5. Secondly, scientists realized in  that while the original BCS

theory only considered pairs with zero total momentum because of phase space argu-

ments, in theory pairs with a �nite total momentum were also possible [, ]. Such

pairs could be formed as a consequence of mismatched Fermi surfaces between up and

down spins, i.e., di�erent densities of the two spins. In conventional superconductors, the

Meissner e�ect forbids such a mismatch in superconductors – yet another consequence

of electronic charge. Once scientists had succeeded in producing a Bose gas of compos-

ite neutral fermions, it was natural to try to explore the physics posited by [] and []

by creating a Cooper paired Bose gas out of mismatched fermions.�irdly, and perhaps

most importantly, both for interacting Bosons as well as interacting Fermions, the in-

teraction strengths were not tunable. Interaction e�ects for liquid He were �xed by its

atomic parameters, and the “pairing potential” between electrons could only be varied

over small ranges by changing, for example, dopant concentration.

With the successful production of a BEC from an “ideal” Bose gas in  [–], and

later, the Bose condensation of Fermion pairs with tunable interaction strength [, ],

cold atomic vapors have opened up new possibilities along each of those lines. Morevoer,

they have presented uswith an extremelymalleable experimental system that canmimic a

wide variety of interactingHamiltonians, providing parallels tomany traditional condensed-

matter systems [].

4In fact, electrons being charged made it harder for them to pair up, requiring lattice-mediated attrac-
tion that only won over Coulombic repulsion at low temperatures.

5�is was realized in  with the discovery of super�uid He [, ], although the pairing (p-wave)
had a di�erent symmetry than electron-electron (s-wave) pairing in a conventional superconductor.





�is thesis is a rather sparse sampling of everything that is interesting about cold

atomic vapors. In chapters  to , we’ll mostly be concerned with the thermodynamic

properties of cold atoms; bosons near a Feshbach resonance will be covered in chapter ,

while fermions near a Feshbach resonance will be discussed in chapters  and . �e

thermodynamics of Bose-Fermi mixtures will be the subject of chapter . Chapter , the

last chapter, will calculate a dynamic property of fermions near a Feshbach resonance,

namely their radio-frequency spectrum.

What will not be covered in this thesis is at least as interesting as what will be, and it

would be unfair not to tell the reader what they would be missing out on, and why this

�eld has generated so much interest over the past decade and half. While a practitioner

of cold atomic physics should be able to jump to the next chapter without any di�culty,

an interested outsider might �nd the story of ultracold atoms fascinating.�e rest of this

chapter tries to summarize the history and excitement of this “revolution that has not

stopped” [].

A good part of that revolution has been made possible by advances in techniques for

trapping and cooling atoms.�is thesis is not about those techniques, and there aremany

excellent texts such as [] on the subject. However, for the sake of completeness, we’ve

brie�y summarized a few common cooling and trapping techniques in appendix D.

. �e story of ultracold atoms

Our story has its beginning in the s, with most of the chapters being added over the

last fourteen years. A familiarity with this story is not necessary for following the rest of

the thesis, but may embed the remaining chapters in their proper contexts. With the aid

of copious footnotes, we’ll try to indicate the relevance of those chapters at appropriate





points during the narrative.

.. Bose condensates

Bose condensation is a consequence of Bose-Einstein statistics. At a temperature T, the

total number of (ideal) Bosons in a uniform system of volume V is

N =∑
k
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where g(є)∝ є/ is the density of states per unit volume at energy є in three dimensions.

�e integral above is �nite for µ ≤ , and increases as µ → −. So it seems that the density

of bosons in three dimensions is limited by the value of the above integral for µ = . Bose

condensation o�ers a way out of such an unphysical quandry; the above integral gives

the density of uncondensed Bosons, while the є =  (or k = ) state is occupied by a �nite

density of particles n. Mathematically, a�er µ hits zero,
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where TBEC = (πħ/mkB)[n/ζ(/)]/. In words, as T drops below TBEC the lowest

energy state is occupied by amacroscopic number of particles6. In terms of the phase space

density nλ
T
, where λT = (πħ/mkBT)/ is the thermal de Broglie wavelength, Bose-

Einstein condensation happens when nλ
T
becomes of order unity7 (nλ

TBEC
= ζ(/), to

6It’s interesting to note that while interactions in He deplete the condensate fraction to % even at
T = , the super�uid transition temperature of . K is quite close to TBEC = .K predicted from this
formula for non-interacting Bosons.

7It’s noteworthy that a consequence of (.) is that a homogenous D (g(є)∝ є−/) or D (g(є)∝ є)
system cannot Bose condense, because the energy integral in (.) is divergent at µ =  (which is to say





be exact). Since λT is the length scale over which a particle is spatially “spread out” due

to the uncertainty principle, nλ
T
∼  is the density at which bosons become “aware” of

neighboring bosons, qualitatively speaking.

For early experimentalists on the quest for an ideal Bose gas, it was quite logical to

choose the lightest Bosonic atom, H, tomaximize TBEC. Unfortunately, hydrogen proved

to be a rather unwilling candidate for Bose condensation [], and only deigned to con-

dense a�ermore than  years of concerted e�ort atMIT and elsewhere []. Meanwhile,

alkali atoms emerged as strong contenders for Bose-Einstein condensation, thanks to the

new technique of laser cooling [–].

As detailed in appendix D, atoms in the path of two red-detuned counterpropagating

lasers can be cooled down to µK temperatures due to photon recoil. �is technique,

which required the atoms to have fairly well-separated, clean spectral lines in the optical

wavelengths, was ideally suited for alkali atoms because of their sharp nSÐ→ n+P lines8.

�e �nal stage of cooling to achieve nλ
T
∼  is evaporative, expelling the more energetic

atoms and allowing the rest of them to thermalize (see appendix D. for a discussion).

�ermalization is achieved by interparticle interaction, which has qualitative e�ects

even in a weakly interacting gas, for example in �xing the size of a Bose-condensed cloud

in a trap. A bosonic cloud of size R in a harmonic trap will in general have three con-

tributions to its energy per particle, (i) the kinetic energy K ∝ /R, (ii) the interaction

energy U ∝ n ∝ N/R, and (iii) the harmonic energy V ∝ R. Since U scales with

that µ never hits zero). However, Bosons in a D harmonic trap can condense, because g(є) ∝ є. By the
same mathematics, in a D harmonic trap the condensate density is given by

n
n

=  − [ T
TBEC

]


instead of (.) because g(є)∝ є.
8For sodium, for example, this transition gives the well-known yellow doublet at Å and Å,

and consequently the yellow color of sodium vapor lamps.





N, it becomes large in the thermodynamic limit, and for U >  (repulsive atom-atom

interaction, such as Na) a competition between U and V sets the cloud size (�gure .

le�). For an attractive atom-atom interaction such as Li (�gure . right), U <  and the

situation is di�erent. For small N, the total energy has a localminimum and a metastable

cloud can be formed, but a�er a critical number of atoms the cloud implodes.�is is why

Wolfgang Ketterle’s group at MIT could make a BEC out of almost a million Na atoms,

but Randall Hulet’s team at Rice University could only put ∼ ,  Li atoms into their

BEC before the cloud imploded [].

R

E(
R)

Repulsive

R

E(
R)

Attractive

Figure .: For a repulsive atom-atom interaction (le�), there is always an equilibrium
size of the cloud. For an attractive atom-atom interaction, the cloud can implode (R → )
beyond a critical particle number.

Unstable condensates such as Li can be stabilized by tuning the interaction energy

using a Feshbach resonance. �e interaction energy per unit volume for a dilute gas at

low temperatures depends on the two-body scattering length a and the density n (see,

e.g., [] or appendix G),

Eint =
πħa
m

n





Near a resonance magnetic �eld B, the scattering length a gets renormalized to

a = abg ( +
∆B
B − B

)

due to the appearance of a bound state (with binding energy Eb = ħ/ma) on the a >

 side; abg is the scattering length in the absence of a magnetic �eld (see, e.g., [] or

appendix G). On either side of the �eld B, the scattering length and consequently the

two-particle interaction energy has di�erent signs.

Irrespective of the sign of abg, the e�ective two-particle interaction can be tuned to be

attractive or repulsive by bringing the cloud close to a Feshbach resonance. Such a knob,

for example, has been used to stabilize condensates where the inherent atomic interaction

is attractive, such as9 Rb. Since , using a combination of such techniques, scientists

have Bose condensed Rb [], Na [], Li [], H [], Rb [], K [], metastable

He [, ], Cs [], Yb [], and Cr []10.

�e proximity to a Feshbach resonance opens up experimental possibilities not avail-

able in super�uid He. On the a >  side of Feshbach resonance, the molecular state

has a lower energy than the atomic state. However, close to resonance the thermody-

namic equilibrium state is not a pure molecular state but rather a mixture of atoms and

molecules. Experimentalists used this coexistence to create a coherent mixture of atoms

and molecules on the a >  side, in which the composition of the condensate oscillated

between mostly atomic and mostly molecular at a frequency determined by the binding

9Interestingly, the Li experiments [, ] never used this stabilization and were thus restricted to
really small condensates.
10Cr is particularly interesting; because of the six electrons in its outer shell, itsmagnetic dipole-dipole

interaction energy is  times stronger than typical alkali atom condensates which are dominated by con-
tact interaction. By tuning the magnetic �eld to a = , a condensate with purely long-range anisotropic
dipole-dipole interaction can be created, with signatures in the expansion [], ground state [] and low
energy excitations [] of the cloud. �e anisotropic (dipolar) interaction can also be tuned, by time-
varying magnetic �elds [], resulting in a condensate with arbitrarily tunable isotropic and anisotropic
interactions. It’s also worth noting that compared to most other species mentioned here, Cr has ex-
tremely narrow resonances, with the broadest one being a ∆B =  µT resonance at B = mT [].





energy []11.

Novel experimental systems involving cold atomic condensates are not just restricted

to those close to a Feshbach resonance. Alkali atom condensates have also been used to

mimic behavior of super�uid He as well as observe behavior theoretically possible for

bosons but never observed in He. For example, while arrays of quantized vortex lines

have been observed in rotating super�uid He [], the high cost of vortex formation

in three dimensions precluded the observation of a triangular �ux lattice a la type-II

superconductors []. Cold atomic vapors have weaker interactions and thus a lower

cost to vortex formation than liquid He, and in  a triangular lattice of vortices was

observed by spinning a D condensate of Na atoms []. In the same year, another

group did a detailed study on the nucleation of a single vortex by slowly spinning up a

Rb condensate [], again exploting the high degree of control in these systems. Some

years later, yet another group observed the destruction of super�uidity by Kosterlitz-

�ouless transition in a D atomic condensate [], analogous to D �lms of super�uid

He12.

11On the a <  side of Feshbach resonance, the interaction energy is negative and, not surprisingly,
leads to a collapse of the condensate and the expulsion of atoms in a Bosenova.�e critical numbers and
(negative) scattering lengths required for a Bosenova were studied in detail by scientists at JILA through
a series of controlled experiments []. �ey also observed that even on the a >  side of a resonance,
an atomic condensate became unstable close to the resonance [], and collapsed at a rate faster than
predicted by the dominant lossmechanismof three-body recombination []. In chapter , we explain this
collapse as being due a negative compressibility of the atomic cloud, which is only stabilized atmuchhigher
densities than those experimentally achieved.�is instability also explains why atomic Bose condensates
created by gradually sweeping a molecular phase close to resonance are never stable.
We also explain in chapter  why this instability is not manifested in experiments such as [], where

a coherent superposition of the atomic and molecular states is observed for ∼  µs. We show that the
atomic state observed in [] is not a thermodynamically stable energyminimum, but ametastable energy
maximum that is stable over  µs timescales due to conservative Hamiltonian dynamics.�is metasta-
bility also explains why adiabatic ramps close to resonance from the molecular side create atomic states
that are longer lived than [] but can’t be maintained for more than ∼ ms.
12Since a trapped D ideal gas allows Bose-Einstein condensation, it’s in fact not completely analogous

to D He �lms, which exhibit super�uidity without Bose condensation. In a D harmonically trapped
bose gase, super�uidity could be either due to a Kosterlitz-�ouless (KT) transition or due to Bose con-
densation, and only recently havematter wave interference experiments con�rmed the formermechanism
[].





�e overarching theme that connects all experiments with cold atomic Bose conden-

sates is that atoms interact, and condensate collapse (or growth) and vortex formation are

just two of the many possible consequences. Other consequences include soliton propa-

gation [, ], zero, �rst and second sound [], squeezed states [], Tonks-Girardeau

gas [], atom lasers [], Mott insulator-super�uid transition [] and Anderson local-

ization [, ]. While a review of each one of them is beyond the scope of this document,

the interested reader is referred to [] and references therein.

.. Degenerate Fermi gases

Atphase space densities of order unity, the aforementionedphenomenonof Bose-Einstein

condensation (BEC) reveals the quantum nature of bosons. By extension, we expect

Fermions to exhibit their quantum nature as well when their phase space density reaches

unity. However, due to the Pauli exclusion principle, their density cannot rise arbitrarily,

and fermions do not “condense” in the sense of macroscopically occupying a single state.

Instead, a Fermi surface develops below the Fermi temperature.

For an ideal Fermi gas of spinless Fermions at temperature T = /kBβ, the equation

of state reads
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where the expansions to the right hold for low temperatures (βµ≫ ) compared to µ/kB.

At high temperatures (βµ ≪ ), the energy per particle goes to its classical equiparti-

tion value E/N = kBT/, while at low temperatures (βµ ≫ ) it goes to a constant





µ/, re�ecting the fact that the fermions must �ll up all states up to the Fermi energy

єF = µ(T = ), and cannot have arbitrarily low energies even at zero temperature. �e

temperature at which this crossover from classical to quantum behavior occurs (βµ = )

can be considered to be the temperature for the onset of Fermi degeneracy. At tempera-

tures below TF = єF/kB, we can expect the consequences of Fermi statistics to dominate13.

Unlike Bose condensates, degenerate Fermi gases are fairly common in everyday life.

Valence electrons of metals form a Fermi liquid with TF ∼ K, so at room temperature

(K) they are highly degenerate. However, an atomic gas of degenerate fermions has

some unique properties not exhibited by a degenerate electron gas in metals. First, inter-

atomic interaction can be tuned by a Feshbach resonance, and consequently energy scales

arising out of that interaction can be varied over a wide range with respect to the Fermi

energy. For example, in normalmetals, although the Fermi temperature is ∼ K, the su-

perconducting transition temperature is a few Kelvins, a consequence of the weak lattice

mediated electron-electron interaction14. In a cold atomic system, the transition tempera-

ture can be tuned to be of the same order ofmagnitude as the Fermi temperature. Second,

the charge on electrons precludes certain states such as magnetized superconductors (or

Cooper pairing between spin-imbalanced electrons), because magnetic �elds are com-

pletely screened by supercurrent eddies. Since cold fermionic atoms are neutral, they can

undergo Cooper pairing in the presence of a spin imbalance and display a whole slew of

behaviors not observed in degenerate electrons. �ird, electron-electron interaction is

always monopolar. Cold fermionic atoms, on the other hand, can display dipole-dipole

13�e chemical potential itself is equal to the Fermi energy only at zero temperature, while at �nite
temperature it is given by []

µ = єF [ −
π


( kBT

єF
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− π


( kBT

єF
)


+ O( kBT
єF

)


]

14For example Mercury, the �rst known superconductor, has TF ≈ , K and Tc = .K, while Tin,
another well-known superconductor, has TF ≈ , K and Tc = .K.





interaction (e.g., Cr), exhibiting physical phenomena not observed in metals.

Fermi pressure, rather than interactions, sets the size of clouds of trapped Fermi gases

by placing upper limits on the real and momentum space densities. �is can be used to

detect the onset of Fermi degeneracy, as demonstrated by scientists at Rice University

and JILA.When the Rice group cooled down a mixture of Li and Li atoms to T = TF/,

they saw that the bosonic Li atoms shrunk to a cloud a third of the size at T = TF, while

the fermionic Li cloud stayed at the same size as at T = TF []. Since the interatomic

potentials between all the atoms in themixturewere identical, this di�erence in behaviors

was a dramatic visually obvious consequence of Fermi statistics.�e JILA group looked

at themomentum and energy distribution in a cloud of fermionic K cooled to T = TF/.

�ey observed the energy per particle cross over from kBT/ for T > TF to kBTF/ for

T < TF, and the momentum distribution go from a gaussian (T > TF) to a parabola

(T < TF) [], complementing []’s observations in momentum space.

�e Pauli exclusionprinciple, which is behindFermi pressure,makes fermionic clouds

stable against collapse even for attractive interactions, but also makes it harder to achieve

degeneracy.�e �nal cooling step to achieve either Bose or Fermi condensation is always

evaporative (see appendix D. for a discussion), where the trap is lowered to leak out the

more energetic atoms. �e rest of the cloud, which now has a lower average energy per

particle, thermalizes to a lower equilibrium temperature.�ermalization in a fermionic

cloud is hindered at low temperatures due to two e�ects, which are consequences of Pauli

exclusion in real and momentum space.

First, thermalization requires elastic collisions between atoms. For a collision with

center of mass angular momentum15 ℓ, the distance of closest approach d and the relative

momentum p must be related by d × p = ℓħ. At low temperatures, p is bounded above

15For ℓ = , ,  . . ., these collisions are called s-wave, p-wave, d-wave and so on and so forth





by the Fermi momentum pF = ħ(πn)/. �us for a ℓ >  collision, d must satisfy

nd > /π, or d ≳ r, where r ∝ n−/ is the interparticle spacing. Elastic collisions

between neutral alkali atoms are mediated by short-range van der Waals potentials.�e

typical range of these potentials is about  a [], which is also the atomic size, andmuch

less than r. So at d ≳ r, the interatomic potential is too weak to cause a collision, and the

only elastic collisions possible at low temperatures are ℓ =  (s-wave). But an s-wave

collision with a  a-range potential requires two identical fermions to spatially overlap,

which is forbidden by the Pauli exclusion principle []. �us thermalizing collisions

between identical fermions are suppressed at low temperatures.

Second, in the energy-momentum space, cooling by thermalization involves high en-

ergy atoms being scattered into low energy states (�gure ., le�), reducing the average

energy per particle. However, as the temperature is lowered, states below the Fermi en-

ergy start �lling up (�gure ., center), reducing thermalizing collisions until for T≪ TF

(�gure ., center) thermalizing stops altogether, e�ectively blocking evaporative cooling

[].

To get around the �rst problem, experimentalists utilize thermalizing collisions either

between two di�erent spin states of the same fermionic atom, or collisions between two

di�erent atomic species. For example, [] and [] trapped two di�erent spin states of

the same fermionic atom. Since s-wave collisions between non-identical fermions are not

suppressed, they can cool the fermions to degeneracy. �is, however, does not counter

Pauli blocking, since each of the fermionic species freezes into its own Fermi sea. Con-

sequently, [] and [] could not reach temperatures below TF/ (roughly).

To get around Pauli blocking, [] and [] cooled fermionic Li by placing it in con-

tact with a Bose condensate of Li, by a technique known as sympathetic cooling. Since

only some of the atoms are now Pauli blocked, collisions are not completely suppressed.
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Figure .: Solid circles denote atoms below the Fermi energy EF, while hollow circles
denote high energy atoms that need to lose energy during thermalization. At T ≫ TF
(le�), there are unoccupied states below EF where high energy atoms can scatter into,
thereby lowering the average energy per particle. At T ≈ TF (center), there are very few
vacant states le� below EF, so scattering events that would lead to cooling are reduced.
At T≪ TF (right), all states below EF are occupied, so the high energy atoms cannot lose
their energy, and cooling stops.

Since then, temperatures as low as .TF have been achieved by sympathetic cooling of

Fermi gases [].

While Pauli blocking makes it hard to cool fermi gases evaporatively, it is also one of

the signatures of Fermi degeneracy, the threshold at which quantum e�ects become ap-

parent in macroscopic properties. Besides a�ecting thermalizing time scales [], Pauli

blocking also changes mechanical collective modes in a gas, such as sound propagation.

Sound waves in a �uid are pressure and density waves that propagate by collisional re-

laxation between adjacent regions of space. A suppression of collisions therefore leads to

a suppression of sound propagation, observed as rapidly damped sound waves in a K

cloud [].

In the days since the �rst degenerate Fermi gases, experimentalists have explored a





whole host of novel systems, including unequal-mass Fermi mixtures [], p-wave pair-

ing [, ], three strongly interacting Fermi states [] and fermions in optical lattices

[, ]. Without a doubt, however, the most important consequence of our ability to

cool and manipulate Fermions is the revival and validation of the concept, developed in

the s, of a BEC-BCS crossover [, , ].

.. BEC-BCS crossover

At low temperatures, as John Bardeen, Leon Neil Cooper and John Robert Schrie�er ex-

plained in , the Fermi sea of electrons in some metals is unstable to a lower energy

ground state. In this ground state, electrons of opposite spins and momenta are paired

into singlets due to a phonon-mediated attractive interaction.�ere is an energy cost to

breaking a pair, and as a result at T →  electron-hole excitations are suppressed. �is

blocks scattering events that give rise to resistivity in regular metals, and an electric cur-

rent can �ow without resistance []. For a summary of the BCS theory, see appendix B.

�e BCS theory was accepted as the explanation of superconductivity, primarily be-

cause of the accuracy of its quantitative predictions, such as the Meissner e�ect [],

speci�c heat [, ], radio-frequency absorption [, ], superconducting transition

temperature and critical magnetic �eld [], isotope e�ect [, ], tunneling density of

states [], Josephson tunneling [, ] and Aharonov-Bohm e�ect in superconducting

loops []. With the discovery of super�uidity in He below .mK [, ], the BCS

theory was generalized to spin-triplet (p-wave) Cooper pairs, using interatomic poten-

tials as a pairing mechanism between neutral fermions []. In a sense, the acceptance of

BCS theory was helped by the fact that high-Tc superconductors – which are not well-

explained by BCS theory – were not discovered until  [–].





Even before the unveiling of high-Tc cuprates, the success of BCS theory in explaining

the super�uidity of He raised a natural question: was the BCS pairing related in any way

to the pairing between two He atoms that formed a bona-�de Hemolecule []? And

was there a mathematical relation between the BE condensation of such molecules and

emergence of a BCS order below some temperature? �ese were not far-fetched ideas,

since there was no symmetry di�erence between aCooper pair of weakly bound fermions

and a tightly bound difermionic molecule; all the di�erences, such as binding energy and

size, were quantitative.

Schafroth in  had the right idea when he postulated that conduction band elec-

trons in metals paired up to form charged bosons [] which underwent super�uid

motion below their BEC temperature, giving rise to a supercurrent []. However, his

ideas were shelved due to lack of quantitative agreement with experiments. �e pairing

of neutral fermionic He atoms brought back into focus the possibility that BCS super-

conductivity was really the same phenomenon as the BE condensation of difermionic

molecules – albeit in very di�erent parameter regimes. To explore that possibility, two

questions needed to be answered: was the BCS theory the weak-coupling limit of a more

general theory of paired fermions, which in the strong-coupling limit yielded tightly

bound bosonic molecules? If so, then was the BEC transition temperature of the bosonic

molecules the strong-coupling limit of a more general temperature scale, which in the

weak-coupling limit reduced to the BCS superconducting transition temperature?

In , Tony Leggett presented a model by which he could answer the �rst of the

two questions [, ]. Considering s-wave contact interaction between two fermions at

T = , he showed that for weak attractive interaction a BCS super�uid appeared, whereas

for strong attractive interaction the ground state was a BEC of di-fermionicmolecules. In

, Noziéres and Schmitt-Rink, using a diagrammatic approach, extended this picture





to T > , and proved that indeed, TBCS and TBEC were the weak and strong coupling limits

of a pairing transition temperature. �e coupling strength for a contact interaction can

be quanti�ed by the two-body scattering length a; a → − yields the BCS limit of weak

attractive interactions, whereas a → + reduces to the limit of tightly bound molecules.

�e connection between the two can be summarized by a phase diagram such as �gure .

(le�) [].

On the BCS side, the phase diagram shows that Cooper pairs form and condense at

the same temperature, re�ecting the well-known fact that current carriers have been ob-

served to have a charge e only in the superconducting phase. On the BEC side, however,

molecules remain non-condensed but paired above their BEC transition temperature.

Further, as we saw in § .., even interactions as strong as in He have a relatively small

e�ect on TBEC, therefore the transition temperature on the BEC side is more-or-less con-

stant as a function of interaction strength. Above the transition temperature on the BCS

side, the normal state is a Fermi liquid of unbound fermions, which forms molecules at

a characteristic crossover temperature (dashed curve in �gure ., le�) set by the inter-

action strength [].�e two limits are separated by the so-called unitarity limit, where

the two-body scattering length diverges16. �e chief signi�cance of this point is that the

only remaining �nite length scale is the interparticle spacing n−/, so all other intensive

physical quantities of the systemmuch be universal functions of that length scale. In other

words, ratios such as Tc/TF, µ/єF and ∆/єF must be the same for all systems at unitarity.

Although appealing to theorists because of its simplicity, this framework of a crossover

between the BEC and BCS limits remained of purely academic interest throughout the

s, since therewere no experimental systems that couldmimic or observe this crossover17.

Interest in crossover physics was revived in the s by theorists who argued that the

16see appendix G for a presentation in terms of the scattering matrix
17If, for example, we could bring the electron gas in a typical metal to unitarity, we would have super-

conductivity at ,K.





weak-coupling BCS theory was insu�cient to account for the high transition tempera-

tures of the cuprate superconductors []. But this �eld really took o� with the realiza-

tion of Fermi degenerate cold gases, whose tunable interactions, unlike superconductors

and super�uid He, could be used to explore both the limits as well as the crossover region

in between.

Creation of diatomic molecules out of two di�erent spin states of a fermion followed

close on the heels of cooling a Fermi gas to degeneracy. Randy Hulet’s group at Rice,

Christophe Salomon’s group at ENS and Rudy Grimm’s group at Innsbruck almost si-

multaneously created long-lived diatomic Li molecules by subjecting them to a mag-

netic �eld on the BEC side of their Feshbach resonance [–]. Simultaneously, Deb-

bie Jin’s group at JILA performed the same feat with K molecules []. Although

these molecules were too warm to Bose condense (yet), no one doubted that a BEC of

di-fermionic molecules was on the horizon. �e wait period was rather short, and in

the same year scientists at MIT [], Innsbruck [] and JILA [] reported the Bose-

Einstein condensation of Li and K on the BEC side of their respective resonances.

One half of the phase diagram (�gure ., le�), the BEC limit of tightly boundmolecules,

was explored.

Detecting a condensate of Cooper pairs at the other limit of the crossover was not as

straightforward as observing a BEC of bosonic pairs. For bosonic molecules, a peaked

distribution in real and momentum space is an infallible signature of Bose condensation.

However, the size of Cooper pairs on the BCS side is comparable to the cloud size, and

the similar shape and size of the condensed and the normal gases makes it di�cult to

detect condensation in the BCS limit. Techniques to indirectly detect BCS condensation

were therefore developed.

�e expansion of a spin-balanced Fermi gas near resonance at low temperatures was





found to be hydrodynamic, similar to the expansion of a super�uid, suggesting the pres-

ence of super�uid order on the BCS side []. Collective breathing mode frequencies

and damping parameters close to resonance on the BCS side were also inconsistent with

Fermi liquid predictions [, ]. A signature of super�uid transition was also observed

in the speci�c heat []. A pairing gap, analogous to the BCS order parameter, was ob-

served spectroscopically in a two-component Li gas []. Some experimentalists adia-

batically ramped a magnetic �eld from the BCS to the BEC side and saw a condensate of

molecules [, ]. Since the ramps were faster than molecular condensation times, the

existence of a molecular condensate was considered proof positive for the existence of a

condensate on the BCS side [].

�e most visually stunning proof of the existence of a condensate throughout the

crossover region came in , whenKetterle’s group loaded a -mixture of ∣mF = ±/⟩

spin states of Li in a optical trap, stirred the cloud for a second, and observed long-lived

vortices persisting throughout the crossover region from /kFa = −. to /kFa =  [].

�e formation of vortices is a sure signature of super�uidity, and their experiment �nally

connected the BEC and BCS limits below the Bose-Einstein condensation temperature18.

With the experimental realization of the BEC-BCS crossover, considerable interest

has emerged in studying crossover physics in spin-imbalanced Fermi systems. While

pairing between fermions with di�erent chemical potentials is possible [, ], the phase

space for such a pairing is extremely small in three dimensions [] and would require

careful tuning of the individual chemical potentials. More generically, a spin-imbalanced

system at T =  can have at least three di�erent phases (�gure .). A normal phase,

without any pairing order, will form when the pairing energy is small compared to the

18I have been somewhat glib about alternately using the terms super�uidity and Bose-Einstein conden-
sation. For a D system without disorder such as [], the two are indeed interchangeable. However, in
general it is possible to have super�uidity without BEC in lower dimensions, and BEC without super�ow
in disordered systems [].





Figure .: For either non-interacting fermions or for fermions mismatched above the
CC limit, there is no pairing and the stable phase is a “normal” Fermi liquid. For weakly
bound pairs a la Cooper pairs, there is a phase separation between the gray super�uid
core and the excess fermions, because the transition is discontinuous. Once the pairs are
tightly bound into molecules, the system is a Bose-Fermi mixture, and may or may not
be phase separated. Red circles are the majority species.

chemical potential mismatch (see, e.g., �gure B., le�, h > hc). In that case, the chemical

potential mismatch is said to be greater than the so-called Chandrasekhar-Clogston (CC)

limit [, ]. When the pairing energy barely beats the mismatch (�gure B., le�, h <

hc), large delocalized Cooper pairs form. Since the transition to a paired super�uid is �rst

order, the two phases are separated spatially. As the pairs become more tightly bound

(and, as a result, smaller), the fact that the bosons are composite objects become less and

less important, and eventually the systems acts like a mixture of bosons and fermions.

Whether there is phase separation or not depends on the details of the atom-atom, atom-

molecule and molecule-molecule interactions19.

19As we will see in chapter , for cold gases, although there is phase separation in this regime, the two
phases are not necessarily pure fermions and pure bosons. In general, a partially polarized normal phase
could also coexist with a super�uid phase [], and which of these phases coexists with which will be
determined by the nature of the transition between them.
In chapters  and , we study these spin-polarized Fermi systems near unitarity in some detail. In

, two di�erent groups subjected spin-polarized mixtures of Li in its two lowest hyper�ne states to
unitarity [, ]. At T = , both groups obtained super�uidity at the trap center. Working with an
extremely elongated cigar-shaped trap, [, ] observed two shells in their density pro�le; a super�uid
core surrounded by a fully polarized normal shell. However, working with a less elongated trap, [,
] observed three shells in their density pro�le, which they interpreted as due to a super�uid core, a
fully polarized normal outer shell, and a middle shell of indeterminate origin – which they claimed was a
“partially paired super�uid” phase (an unfortunatemisnomer, since this phase was above the CC limit and





Recently, putting these crossover systems on optical lattices has become another di-

rection of research. By tuning the lattice depth and interatomic interaction, the on-site

and hopping interactions can be simultaneously tuned, providing an idealmodel of solid-

state systems. Researchers have managed to achieve both a condensate of molecules []

as well as a super�uid across the BEC-BCS crossover region [] for fermions in an opti-

cal trap. Current research is focused on using cold atoms to simulate solid state systems

[].

Deep in the BEC side of resonance, a spin-imbalanced system can be described as a

Bose-Fermi mixture of molecules and atoms [].�is is a very speci�c case of a more

general interacting heteronuclear Bose-Fermi mixture. Feshbach resonances have been

observed in such mixtures of Rb and K []. Using enhanced collisions near such

a resonance, scientists in Florence and JILA have simultaneously cooled a Bose-Fermi

mixture to degeneracy [, ]20.

While a Feshbach resonance can tune the interaction between two species, or two

hyper�ne states of a Fermion, some atoms have multiple hyper�ne states with multi-

ple closely-spaced Feshbach resonances between the di�erent possible pairs. �is leads

to a mixture of more than two strongly interacting species. Recent spectroscopic mea-

surements have observed signatures of two nearby Feshbach resonances in three-fermion

hence normal). We devote chapter  calculating the phase diagram of a vanishingly small fraction of down
spins in a Fermi sea of up spins, in particular the ratio of their chemical potentials at which the density
of down spins goes to zero. We see that the Noziéres-Schmitt Rink (NSR) formulation overestimates the
interaction at unitarity; while theNSRprescription correctly interpolates between theBECandBCS limits,
at unitarity, it fails due to strong interactions.

�e elongated trap [, ], on the other hand, observed an e�ect absent in [, ]. Although the
oscillator lengths were much larger than the interparticle spacing, there was an apparent LDA violation;
the boundary between the two shells in [, ] did not follow an isopotential contour. In chapter , we
explain this as being due to surface tension between the two shells, arising from a �rst order phase tran-
sition. We calculate the coe�cients of a Landau-Ginzburg free energy to estimate the surface tension at a
super�uid-normal interface, and compare it to empirical �ts to experimental data.
20�is has strong parallels with a He-Hemixture, and in chapter , we show how an interacting Bose-

Fermimixture can be used to construct a “dilution fridge” in a cold atomic system, analogous to a He-He
dilution refrigerator.





systems21.

.. Future directions and parallels with other systems
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Figure .: Analogy between BEC-BCS crossover for cold gases and high-Tc supercon-
ductors. Le�: (Schematic) phase diagram for cold gases near unitarity, according to
[]. Deep in the BCS side (conventional superconductors), Cooper pairs form and
condense at the same T, while deep in the BEC side, molecules that form do not neces-
sarily condense until su�ciently cooled. Right: Well-known phase diagram for cuprate
superconductors.�e area below the dashed curve displays a pseudogap phase, which is
characterised by a suppression of the density of states near the Fermi energy without a
superconducting gap.

�e unprecedented control available for cold atomic gases has brought a little known

concept from  years ago to the forefront of theoretical physics. While any theory that

successfully connects widely disparate phenomena such as molecule formation and su-

21For example, the three lowest hyper�ne states of Li (∣/, /⟩, ∣/,−/⟩ and ∣/,−/⟩, respectively
called ∣⟩, ∣⟩ and ∣⟩) have pairwise resonances at G,  G and G, even the narrowest of which
is G wide. �is means that at a �eld of, say, G and Fermi energy of  KHz, all three pairs will be
close to unitarity, with /kFa of ., . and -.. A group at MIT [, ] observed the RF spectra of
a paired ∣⟩-∣⟩ state at unitarity to be very di�erent from what a pairing gap picture would suggest [].
In chapter , we will calculate how the presence of a ∣⟩-∣⟩ resonance near the unitarity of ∣⟩-∣⟩ changes
the RF spectrum due to strong ∣⟩-∣⟩ interactions. We will also show that generically such a spectrum can
be of two types, and will classify existing RF spectroscopy experiments accordingly.





perconductivity is exciting in its own right, some scientists are hopeful that crossover

physics might also explain the as-yet unexplained phenomenon of high-Tc superconduc-

tivity in cuprates.�e optimism stems from the fact that the phase diagram of a cuprate

superconductor (�gure ., right) looks topologically similar to the BEC-BCS phase di-

agram for cold gases (�gure ., le�). �e low (high) impurity limit for cuprates cor-

responds to the BEC (BCS) limit of cold gases. For low hole doping, before the onset of

superconductivity, cuprate superconductors display a pseudogap state, where the tunnel-

ing density of states at the Fermi level is partially suppressed, signaling the onset of some

kind of order [–]. If this were due to pre-formed electron pairs, it would be analo-

gous to the BEC side of the cold gas phase diagram, where pairs form at a much higher

temperature than their condensation temperature. On the highly doped side, cuprates

do not display a pseudogap, much like Cooper pairs form and condense simultaneously

in the BCS limit. If the pseudogap were due to some sort of pairing order, then under-

standing crossover physics could give us clues to high-Tc superconductivity.

While it is easy to get carried away by these analogies, it should be kept inmind that till

date, no experiment on high-Tc superconductors has conclusively proved the existence of

pre-formed pairs, despite promising forays []. On the other hand, no cold gas experi-

ment has ever demonstrated the existence of a pseudo-gap, although successful theories

to explain spectroscopic experiments include theories involving a pseudogap []. More

investigation is needed on both fronts, but there is room for cautious optimism [].

Attempts are also underway to draw parallels between cold atoms and degenerate

fermions at a di�erent energy scale, – quark-gluonplasma, neutron stars andwhite dwarfs.

While the energy scales are di�erent, due to the universality of the physics at unitarity,

measurements of viscosity and three-species pairing in cold gases could provide insight

into the behavior of the higher energy systems [].





CHAPTER 

THERMODYNAMICS OF BOSE CONDENSATES NEAR A FESHBACH

RESONANCE

�is chapter was adapted from “Stability of bosonic atomic and molecular condensates

near a Feshbach resonance” by Sourish Basu and Erich J. Mueller, published in Physical

Review A ,  () [].

Using Feshbach resonances [], experimentalists can tune the interactions in atomic

clouds[, , , , , , ]. For a system of Fermi atoms, this technique has al-

lowed the study of a crossover between a BCS super�uid of Cooper pairs to a BEC super-

�uid of molecules [, , , ]. Recently three separate theoretical groups[–]

have proposed that for Bosonic atoms the same technique can produce a phase transition

between an atomic and a molecular super�uid (respectively called ASF and MSF hence-

forth, a�er []). If, as suggested by Romans et al [] and Radzihovsky et al [], this

quantum transition is continuous, then it would be in the Ising universality class, with

dramatic signatures in the properties of vortices.�e topological character of this phase

transition makes it of intense interest to a large community of physicists.

Here we show that in the limit of vanishing molecule-molecule and atom-molecule

interaction (the same limit considered in [] for constructing their phase diagram), no

ASF↔MSF phase transition can occur near a Feshbach resonance (de�ned as where the

molecular binding energy approaches zero). Previous work[, ] showed that as one

decreases themagnitude of themolecular binding energy, but before reaching resonance,

the MSF becomes unstable. In those works it was assumed that the instability leads to a

phase containing atomic super�uid order. We demonstrate that without the stabilizing

in�uence ofmolecule-molecule interaction the system has a negative compressibility and

this instability actually leads to a mechanical collapse of the cloud, and adding repulsive





molecule-molecule interaction only stabilizes the cloud at su�ciently high density (esti-

mated at least three orders of magnitude higher than current experiments [, , ]).

�ree-body losses are therefore likely to make the phase transition unobservable.

Experiments are routinely performed [, ] on dilute atomic clouds on themolecu-

lar side of a resonance (i.e., the side on which a boundmolecule exists), so this instability

cannot be the whole story. Indeed, we verify the existence of a mechanically stable ASF

in this region and show that it always has a larger energy than the molecular condensate,

precluding the possibility of a phase transition (even a �rst order one). Furthermore, we

demonstrate that this ASF is a saddle point of the free energy, and it is always energeti-

cally favorable for atoms to recombine into molecules. It is only the slow kinetics of this

recombination, which relies upon three-body collisions, which allows experiments to be

performed on atomic condensates. A simple model of these kinetics was presented by

Cragg and Kerman [].

Most of our points about the properties of the atoms were made by Timmermans,

Tommasini, Hussein, andKerman [] several years before the publication of refs. [–

]. In particular, Timmermans et al. were aware of both the topography of the energy

landscape and the mechanical instability which precludes a pairing transition.�e main

new contribution of this work is that we perform a detailed analysis of interactions.�is

is particularly important given the potential of these terms to stabilize the cloud.





. Phase diagram

We model the Hamiltonian for a mixture of atoms and molecules near a one-channel

Feshbach resonance as

F = ∫ [Fm(x) + Fa(x) + Fam(x)] dx (.)

Fa =
∇ψ†a∇ψa

m
− µψ†aψa +

λa


ψ†aψ†aψaψa

Fam = g [ψ†mψaψa + ψ†aψ†aψm] + λamψ†mψ†aψaψm

Fm =
∇ψ†m∇ψm

m
+ (є − µ)ψ†mψm +

λm


ψ†mψ†mψmψm

where Fa and Fm represent the pure atomic and molecular contributions, and Fam the

coupling between them. Field operators ψa(x) and ψm(x) respectively annihilate atoms

and molecules at position x (which is suppressed in these equations). Parameters λ rep-

resent the strengths of elastic scattering, while g represents the strength of conversion

between atoms and molecules, µ is the chemical potential, and є <  is the binding en-

ergy of a molecule, which can be controlled by tuning an external magnetic �eld. To treat

this Hamiltonian within mean �eld theory one must renormalize the coupling constants

from their bare values. For example, Duine and Stoof [] have derived a simple renor-

malization schemewhich connects these quantities with their bare values, providing their

magnetic �eld dependence. We emphasize however that for bosons near a Feshbach res-

onance there is no simple expression relating the various λ’s.

In this paper, we �nd the stationary points of (.), and analyze their stability. We

discuss two types of stability: dynamic, where small �uctuations do not grow in time;

and thermodynamic, where small �uctuations cannot reduce the free energy. Although

a thermodynamic instability implies that the system will eventually decay, the timescale,

which is governed by kinetics and dissipation, may be long enough that the system ap-

pears stable. (In fact, since the ground state of alkali atoms at nano-Kelvin temperatures
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Figure .: Phase diagrams of Eq. (.) without background atom-molecule scattering
(λam = ) in the parameter space of binding energy є and density n (a) or chemical po-
tential µ (b), at λm = λa. As quantitatively discussed in the text, similar results hold for
more general values of λm. �e various dotted lines separate phases with a discontinu-
ous transition, while the solid lines denote a continuous transition. �e tricritical point
between MSF and ASF in the two �gures, at nλaλm = g, corresponds to the lowest
density for which a stable ASF exists.�e forbidden region in �gure (a) corresponds to a
coexistence region where the system phase separates.

is a solid, all experiments on ultracold atoms involve states which are thermodynam-

ically unstable.) Following convention, we describe a thermodynamically unstable (but

dynamically stable) phase asmetastable. In determining the stability of the systemwewill

only consider long wavelength modes, hence it it is possible that some of the metastable

states we report are actually dynamically unstable.

As shown by previous authors [, ], for g ≠ , there are two possible super�uid

orders: (a) a pure molecular condensate ϕm = ⟨ψm⟩ ≠ , ϕa = ⟨ψa⟩ = ; and (b) a mixed

atomic/molecular condensate ϕa ≠ , ϕm ≠ . States with these respective orders will be

called a molecular super�uid (MSF) and an atomic super�uid (ASF).

Generically there are two classes of modes that can destabilize these states: density

�uctuations, and pairing �uctuations.�e latter modes change the relative population of





atomic and molecular states without changing the total density. Mueller and Baym []

characterized both types of modes within a random phase approximation, showing that

in the absence of a molecular bound state there is no phase transition between an atomic

and paired super�uid. Our current calculation extends this result to the case where a true

molecular bound state exists.

Our primary results are the phase diagrams in �gure ., shown for λam =  and

λm/λa = . Due to the presence of metastable states in experiments involving ultracold

alkali atomic vapors, we do not limit our discussion to the thermodynamic ground state

in each region, but also analyze the stability of other stationary points of the energy, which

can have either ASF orMSF character.�ese stationary points, herea�er called solutions,

can be found by working at either �xed density or �xed chemical potential. All ASF states

share the same symmetry. When we �nd multiple ASF states at the same parameter, they

will have varying molecular contribution.

Fixing the density (�gure .(a)), the “forbidden” region contains three or four solu-

tions, all of which are unstable: A, an ASF thermodynamically unstable to pairing; A,

an ASF dynamically unstable to density �uctuations; M, anMSF unstable to pairing; and

optionally A, anASF dynamically unstable to relative phase �uctuations. Such forbidden

regions, where there are no stable bulk phases, are generic features of �rst-order phase

transitions. �ey correspond to coexistence of two bulk phases: a system taken to the

forbidden region will spontaneously phase separate into anMSF and amuch higher den-

sity ASF, much as a thermos �ask �lled with water molecules can spontaneously separate

into liquid and vapor. �e “MSF” region contains a stable MSF, and either one (A) or

three (A, A, A) ASF solutions, two of which (A, A) are thermodynamically unsta-

ble to pairing while the other (A) is dynamically unstable to density �uctuations. A,

however, is dynamically stable against all �uctuations if єλa < g. �at is, under these





conditions, A is metastable. �e “ASF” region contains two (A, A) or three (A, A,

A) ASF solutions, one (A) of which is stable. In this region the MSF (M) is unstable to

pairing.

Fixing the chemical potential (�gure .(b)), the “vacuum”, where the ground state

contains no particles, has an unphysical ASF solution with negative density. �e “MSF”

region contains a stableMSF solution, an unphysical ASF solution, and possibly twomore

ASF solutions, one unstable and the other metastable, possessing a higher free energy

than the MSF.�e unphysical solution has negative density. �e “ASF” region contains

three ASF solutions, one of which is unphysical, one unstable, and one stable. �e un-

physical solution corresponds to negative density, and the unstable one becomes stable

when µ > . In this region, the MSF is either unstable to pairing or has a higher free

energy than the stable ASF solution.

In the remainder of this paper, we derive those results; we �nd the stationary states

of the Hamiltonian (.) and analyze their dynamic and thermodynamic stability against

density and pairing �uctuations at λm = λam = . We then explore the role of �nite λm

and λam. We give full details for the calculation at �xed density, and brie�y sketch the

procedure for �xed chemical potential.

Given that we are using a mean �eld approach it is important to address the point

that the model in (.) is o�en quoted as an example of a Hamiltonian with a “�uctua-

tion driven" �rst order phase transition [, ], where taking into account quantum

�uctuations turns a second order phase transition into a �rst order one. �is standard

nomenclature can be slightly confusing: what it physically corresponds to is the fact that

themean-�eld prediction of the location of the tricritical point is shi�ed by quantum�uc-

tuations.�is shi� results is a parameter range for which the mean-�eld theory predicts

a second order phase transition, but for which the actual system displays a �rst order





transition. �e topology of �gure . is generic and, aside from a small critical region,

one expects that the e�ects of quantum �uctuations can be incorporated into a renor-

malization of the parameters. We feel that our estimates of the feasibility of observing

the pairing phase transition transcend the mean-�eld approximation.

. Stationary States (�xed density)

Assuming a uniform condensate exists, we replace the �eld operators in Eq. (.) by their

expectation values, ϕm = ⟨ψm⟩ =
√
nme iθm and ϕa = ⟨ψa⟩ =

√
nae iθa , where na/m and

θa/m are the number of condensed atoms/molecules and their phase. �e energy only

depends upon the phase di�erence ξ = θm − θa, so without any loss of generality we

will take ϕa to be real and positive. Setting ∂⟨F⟩/∂ξ =  shows that ϕm must also be real,

but not necessarily positive. Wework at �xed density, n = na+nm, writing ϕm =
√
n/x,

and ϕa =
√
n
√
 − x with − ≤ x ≤ . �e points x = ± represent the same state. �e

shi�ed energy E = ⟨F⟩ + (µ − є/)n is then

E =
λan


( − x) +

єn


(x − ) +
√
ngx( − x) (.)

We de�ne the dimensionless parameters α = λan//g
√
 and β = є/g

√
n ≤ . For

β < −, as long as α is not too negative, there are two extrema as a function of x: the

boundaries x = ± are local minima (M) and a maximum (A) lies between x =  and

x = . However, if α is reduced until ( + α − αβ) = ( − αβ), we �nd two

additional local extrema; a minimum at A and a maximum at A. At β = −, the x = −

point bifurcates, and for β > − it is a local maximum and the local minimum (A) is

found in the region − < x < . Illustrative plots are shown in �gure .(a).

Previous analyses [, ] show that theMC state M is always stable against density

�uctuation, and is (thermodynamically and dynamically) stable against pairing �uctua-
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Figure .: Scaled energy E = ⟨F⟩ + (µ − є/)n versus molecular condensate order
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state M has E = . (a) λm = λam = : curves show −є > g
√
n (β < −), −є < g

√
n

(β > −), and −є = g
√
n (β = −). For β < − there are two sub-cases: either a single

stationary point (A) or three stationary points (A, A and A). (b) λm , λam ≠ : A does
not exist if both of them are zero.

tions if and only if β < −.

�ermodynamic stability of the ASF is explored by calculating the Hessian Hi j =

∂E/∂i∂ j, where i , j = x , n. Using the condition ∂E/∂x = , these derivatives can be writ-

ten as Hxx = n[є + λa(nm − na) − gϕm], Hxn = Hnx = [g(nm − na) − єϕm]/
√
n,

Hnn = na(naλa + gϕm)/(n). �e determinant of the Hessian (the discriminant) is

related to the compressibility, ∂µ/∂n = (HnnHxx − Hnx)/Hxx . For A the discriminant

is always negative, while for A and A it is negative for λє > g and otherwise positive.

�us A, which is always stable against pairing �uctuations (Hxx > ), is always thermo-

dynamically unstable towards density �uctuations (i.e. has a negative compressibility).

Similarly A and A are always thermodynamically unstable against pairing �uctuations

(Hxx < ), and are thermodynamically unstable against density �uctuations if and only

if λє > g.

Dynamical stability is explored by calculating the equations ofmotion for the �uctua-





tions. Wewrite the �eld operators in terms of density �uctuation ρ̂(r), pairing �uctuation

ŷ(r), relative phase �uctuation χ̂(r), and total phase �uctuation θ̂(r).

ψ̂m(r) =

√
n + ρ̂(r)


[x + ŷ(r)]ei[θ̂(r)+ξ+χ̂(r)] (.)

ψ̂a(r) =
√
n + ρ̂(r)

√
 − (x + ŷ(r))e i[θ̂(r)−ξ−χ̂(r)]

�e equations of motion are found by making stationary the action

S = ∫ iψ̂†a∂tψ̂a + iψ̂†m∂tψ̂m −F (.)

Working to quadratic order in the �uctuations, we �nd

ρ̇k =
n
m
kθk −

nu
m

kχk (.)

uρ̇k − nx ẏk =
nu
m

kθk − [
n
m
k +Hξξ] χk

nx χ̇k = [vk −Hnx]
ρk


− [

n(x + )
m( − x)

k +Hxx]
yk


θ̇k − uχ̇k = [
x − 
mn

k −Hnn] ρk + [vk −Hnx] yk

where Hξξ = −
√
ngx( − x), u =  − x, v = x/m, ȧ ≡ ∂ta and the Fourier

components of the �uctuation operators are de�ned by O(r) = ∑k Oke ikr. As k →  the

density and pairing modes decouple, and their frequencies are

ωdensity = cs k + O(k)

ωpair = ∆ + O(k)
(.)

where the speed of sound is related to the compressibility by the standard expression cs =

(n/m)∂µ/∂n, and the gap to pairing excitation is ∆ = HxxHξξ/nx. Since Hξξ ∝ −x,

A and A are dynamically stable against long wavelength pairing �uctuations, while A

is unstable. Conversely, we see a long wavelength dynamic instability towards density

�uctuations if and only if a thermodynamic instability exists.

In the special case where λa = , Timmermans et al. investigated these same collec-

tive modes []. Our results reduce to theirs when we set λa = . We note, however, that





Timmermans et al. found that for some parameter ranges the long wavelength modes

were stable, but shorter wavelength modes become unstable. �us we expect that some

of the regions which we report as being metastable may possess �nite k dynamical insta-

bilities.

For any given set of parameter values, it is straightforward to check to see if there are

any �nite k instabilities: Eq. (.) gives an analytic expression for the entire spectrum.

On the other hand, it is a di�cult task to produce a closed form expression for when a

�nite wave-vector instability occurs, and we have been unable to produce a particularly

enlightening expression (except for when when λa = ).

. E�ect of non-zero λm and λam

We have seen that in the absence of λam and λm there is no stable ASF, and the metastable

ASF always has larger energy than the MSF. Hence there is no MSF↔ASF phase tran-

sition. We now show the existence of a continuous MSF↔ASF phase transition when

λm > . To produce such a continuous phase transition it is necessary and su�cient to

show that there exists a stable ASF, with arbitrarily small atomic fraction, at the point

the MSF becomes destabilized. In the presence of a non-zero λm and λam �gure .(b)

represents the generic structure of E; two minima at A and A and a maximum at A. In

terms of dimensionless parameters γ = λm
√
n//g and η = λam

√
n//g, A, appears

at x = ∓ when β + γ − η = ∓, where the upper signs correspond to A and the lower

signs correspond to A.

�e compressibility at x = ∓ when A, �rst appears is proportional to αγ−(∓η).

So neither ASF is stable if γ = , i.e., even when λam ≠ , a continuous MSF↔ASF phase

transition cannot exist if λm = .





�e curvature (Hxx) at x = ∓ when A, �rst appears is proportional to ±+(α+γ−

η). At A, Hξξ ∝ −x is negative, and therefore ∆ ∝ HxxHξξ is negative whenever Hxx >

; i.e., A is always either dynamically or thermodynamically unstable against pairing

�uctuations. �e dynamical instability of A even when Hxx >  can be understood as

instability against �uctuations in ξ, i.e., in the x − ξ plane, the energy has a saddle-point

at A (recall that ξ is the relative phase between the atomic andmolecular components).

At A, however, Hxx >  is equivalent to ∆ ∝ HxxHξξ > .

When the atom-molecule scattering vanishes (η = ), the stability conditions at A,

viz. Hxx >  and ∂µ/∂n >  are simultaneously satis�ed if and only if γ >  and αγ > .

�us there exists an MSF↔ASF continuous phase transition when λam =  if and only if

nλaλm > g and λm > .

�e general criterion for the existence of a continuous MSF↔ASF phase transition

when λm ≠ , λam ≠  can be worked out in the λm − λam space from the conditions

αγ > ( − η) and  + (α + γ − η) > .

. Stationary States (�xed chemical potential)

Working at �xed chemical potential (and taking λam = ), there are two type of stationary

points of Eq. (.); an MSF: ϕa = , ϕm = (µ − є)/λm, and an ASF: λaλmϕm + (λa(є −

µ) − g)ϕm + µg = , ϕa = (µ − gϕm)/λa.�e ASF equation has three solutions, one

of which can be ruled out on the basis of having a negative density (the topmost dotted

line in �gure .). Stability analysis is done for both ASF and MSF states by considering

�uctuations in ϕm, ϕ∗m, ϕa and ϕ∗a , analogous to Eq. (.).�e corresponding dynamical
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Figure .: Stationary points of F , calculated with λm = λa. (a) For ε = − (below the
tricritical point), as ν is increased from a negative value to , �rst the MSF turns stable,
and then there is a continuous phase transition to the ASF (the thick gray line, which is
the stable state with the lowest free energy, is continuous), which appears and becomes
stable. (b) For ε = − (above the tricritical point), the ASF turns stable before the MSF
becomes unstable, and there is a discontinuous phase transition when their energies are
equal (thick gray line is discontinuous). (c) Finally, for ε = −, a stable ASF appears �rst
from vacuum, and it has the lowest energy throughout; so there are no further transitions.

equations are

i∂tδψa =(−

m

∇ − µ + λa ∣ψa∣

) δψa

+ (λaψa + gψm) δψ∗
a + gψ∗

aδψm

i∂tδψm =(є − µ −

m

∇ + λm ∣ψm∣

) δψm

+ gψaδψa + λmψmδψ∗
m

(.)

In terms of dimensionless quantities φ = ϕmλm/g, r = λm/λa, ε = єλa/g and ν = µλa/g,

the MSF solution �rst appears at ν = ε and is stable for ν < ( − 
√
 − εr)/r (where





the dashed lines in �gure . end).�e two physical ASF solutions exist for ν > νc where

(ε − νc − ) + νcr = ; one of them is always stable (thin solid line in, e.g., �g-

ure .(b)), the other is stable for ν > . �e ASF↔MSF tricritical point is obtained by

demanding that the two physical ASF solutions appear exactlywhen theMSFdestabilizes.

Mathematically,

(ε − ν − ) + νr = 

φ + φr(ε − ν − ) + νr =  (.)

φ − r(ν − ε) = ,

where the �rst equation is the condition for the appearance of physical ASF solutions, the

second sets φ, and the third is the condition for the destabilization of the MSF. Solving

these three simultaneously gives the tricritical point νtc = −/
√
r and εtc = − − /

√
r;

r therefore uniquely determining the phase diagram. Coupled with n = ϕm = (µ −

є)/λm, this yields the familiar result nλaλm = g.

. Discussion

We have shown that a continuous ASF↔MSF phase transition can occur at su�ciently

high density in a Bose gas near a Feshbach resonance with repulsive molecule-molecule

interaction. �is ASF does not, however, correspond to the phase currently studied in

cold atom experiments. �e experimental “phase” is a saddle point of the free energy,

and always has a higher energy than the MSF.

�e most obvious route to studying this transition would involve �rst creating an

MSF (for instance, using the technique of Xu et al []), then slowly ramping toward

the resonance (making ∣є∣ smaller). As pointed out by previous authors [, ] the

transition could be detected by observing the behavior of vortices.





We caution that this transition does not occur at arbitrarily low densities, nor in the

absence of molecule-molecule scattering. Estimating λm ∼ πħas/m far from reso-

nance, and using g ∼ (πħ/m)abg∆µ∆B as in [], we see that in current experi-

ments [, , ] use samples which are too dilute to observe the transition. Increas-

ing the density further is made problematic by three-body relaxation []. In fact, esti-

mating the time scale of three-body recombinations[] to be τ-body ∼ m/ħas n with

as = ħ/
√
mєc (єc being binding energy for the transition) and n = g/λaλm already gives

τ-body ∼ −s. Quantum interference e�ects can drastically reduce this decay rate, but

only at particular binding energies set by the locations of E�mov states []. We fear

that one would need particularly fortuitous circumstances for these interference e�ects to

provide su�cient reduction in the decay rate. Using a photoassociation transition in lieu

of Feshbach resonance may provide enough control over the parameters of the system to

avoid these di�culties[].





CHAPTER 

EQUATION OF STATE OF SPIN-POLARIZED FERMIONS

�is chapter represents unpublished work. Some of the results have been presented in

[].

. Introduction

Here we address the equation of state of the T =  normal state of a two-component

spin-polarized Fermi gas.�is equation of state is directly observable in experiments by

measuring the densities of the two species as a function of position in a trap. In ,

two groups loaded a trap with spin-polarized mixtures of Li in the two lowest hyper�ne

states [, ]. �e MIT group [, ] observed a “three-shell structure” with a fully

paired super�uid (SF) core, surrounded by a “paired super�uid”1, surrounded by a fully

polarized normal �uid. Here wewill try to calculate the phase boundary between a paired

SF and a polarized normal �uid.�e following calculation is at T =  and will mostly be

at unitarity, i.e., ∣as∣→∞, but it is straightforward to extend it to a �nite as (two-particle

scattering length).

We�nd that a spin-imbalancedmixture of up anddown spin Fermions becomes com-

pletely polarized at µ↓ ≤ −.µ↑. We also �nd that such a mixture becomes dynamically

unstable for n↓/n↑ > .. Neither of these numbers agree with experimental �ndings

except for the order of magnitude, and both discrepancies can be traced to the over-

estimation of interaction e�ects in the Noziéres Schmitt-Rink formulation.

1�e structure of this phase is still debated, i.e., whether it is simply a homogeneous mixture of SF and
normal �uid, or whether there are other novel phases (such as FFLO) hidden there.





. Formulation of the free energy

As a function of population imbalance, there is a phase transition between a BCS-paired

super�uid phase and the normal phase. At su�ciently low temperature, this transition is

�rst order, as shown in appendix B.We calculate the free energies of both the phases, and

the phase boundary is themanifold on which they are equal. We begin with the polarized

normal phase. For a Hamiltonian of the form

H =∑
p,σ

єpC†p,σCp,σ −U ∑
p,p′ ,q

C†p+q/,↑C
†

−p+q/,↓C−p′+q/,↓Cp′+q/,↑ (.)

the interaction correction to free energy Ω is approximated by[]

∆Ω =� −

� +


� − ⋯ (.)

where Ω is de�ned by

e−βΩ = Tr e−βH (.)

�is approximation is valid in the dilute limit on both sides of a Feshbach resonance (as →

± or ∣askF ∣ ≪ ). We do not expect this approximation to be quantitatively accurate in

the strong coupling limit (− < /askF < ), but as a function that interpolates between

the exact BEC and BCS results, we might expect ∆Ω to be o� by at most a small factor

near unitarity.�e dashed lines are interaction lines, and the usual Feynman rules apply.

For the form of our interaction, the inner and outer Fermion lines must have di�erent

spins. To evaluate this series, we de�ne a scattering matrix Γ as

Γ =� =� +� +� + ⋯

=� +�
(.)





where the top and bottom Fermion lines have opposite spins.�e change in free energy

∆Ω is given by[]

∆Ω = −

π∑q ∫

∞

−∞
dν g(ν) [δ(q, ν) − δ(q, )]

δ(q, ν) = arg Γ(q, ν)
(.)

where g(ν) = (eβν − )− is the Bose-Einstein distribution function.

It turns out that Γ is a function of only the sum of the incoming momenta and fre-

quencies, and in particular if the incoming momenta are (p + q/,−p + q/) and the

outgoing momenta are (p′ + q/,−p′ + q/) (where p ≡ (p, iωn)), then the scattering

matrix is given by

Γ(p + q/,−p + q/, p′ + q/,−p′ + q/) ≡ Γ(q) =
−U

 −UΘ(q)
(.)

where Θ is the two-particle propagator

Θ(q, iνn) =∑
k

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

 − f (є q

+k − µ↑ + Σ↑) − f (є q


−k − µ↓ + Σ↓)

є q

+k + є q


−k − iνn − µ↓ − µ↑ + Σ↓ + Σ↑

−

єk

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(.)

and Σσ is the self-energy of a spin-σ particle. �e subtraction of the divergent term in

equation (.) follows from the relation between the scattering length and U,

U = −
πas
mV

+∑
k


єk

(.)

. Calculating the scattering matrix

Calculating Γ is hard because the self-energies depend on Γ, and have to be determined

self-consistently. For our �rst approximation; we �x the self-energies to their values at

ω =  and k = kσ
F. At T = , the combination µσ − Σσ can be related to the population by

(kσ
F)


m
= µσ − Σσ(kσ

F) and kσ
F = (πnσ)

/
(.)





so that the scattering matrix Γ is

Γ(q) =
π

mVk↑F



(ask↑F)
−
+ Θ̃(q̃)

(.)

where Θ̃ is Θ in a dimensionless form. At T =  we �nd an analytic expression for equa-

tion (.), �nding that the result depends only on the magnitude of q and ν,

Θ̃(q̃, ν̃) =

π

[πiζ − ( + r)]

−

π

[

q̃
(


q̃ + ζ + q̃ζ − ) log(

q̃ + ζ − 
q̃ + ζ + 

)

+

q̃
( + q̃ζ −



q̃ − ζ) log(

q̃ − ζ + 
q̃ − ζ − 

)

+

q̃
(


q̃ + ζ + q̃ζ − r) log(

q̃ + ζ − r
q̃ + ζ + r

)

+

q̃
(r + q̃ζ −



q̃ − ζ) log(

q̃ − ζ + r
q̃ − ζ − r

)]

(.)

where

q̃ =
q
k↑F
; r =

k↓F
k↑F
; ν̃ =

mν

(k↑F)

; ζ = ν̃ +



( + r) −



q̃ (.)

When µσ − Σσ < , we take kσ
F = .�e normal �uid is stable above some critical polar-

ization, i.e., below some critical r. Remarkably, the (modi�ed)�ouless criterion for a

pairing instability,

Θ̃(q̃, ) +


ask↑F
=  (.)

is �rst satis�ed for a �nite q, at rc = . at unitarity. �is, however, corresponds to a

spinodal, and this instability is preëmpted by a �rst order transition at some r < rc.





. Calculating the self energies

�e self energies in (.), which relate kσ
F and µσ according to (.), can be written down

for the form of interaction (.) to be

Σσ(k, iωm) =� =

β∑q
∑
iωn

Γ(k + q, iωm + iωn)G−σ(q, iωn) (.)

where G−σ is the Green’s function including the self-energy,

G−σ(q, iωn) =


iωn − єq + µ−σ − Σ−σ(q, iωn)
(.)

So the self energy has to be determined self-consistently. We again use our previous ap-

proximation, i.e., we �x the self-energies to their static values at the Fermi momenta.

�e Matsubara sum in (.) can be converted to a contour integral, and is evaluated in

appendix H.�e results are shown in �gure .. Of particular importance is the r = 

point in �gure . (right), which tells us that the down spin density vanishes when µ↓ ≈

−.µ↑. Experimental data[] shows that µ↓ ≈ −.µ↑ when n↓ = 2. �is discrep-

ancy is not surprising, given the di�culty of modeling the correlations in this strongly

interacting gas, and later in the chapter we will discuss possible remedies.
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Figure .: Up and down spin self energies as functions of r computed from eq. (H.).

2Monte-Carlo simulations point to µ↓ ≈ −.µ↑ at vanishing n↓ [, ].





. Calculating the T =  free energy

We now calculate the free energy Ω = Ω + ∆Ω. �e noninteracting energy Ω for a

normal �uid is

e−βΩσ =∏
k

( + eβ(єk−µσ))

which at T =  reduces to

Ω
V

=
Ω↑ +Ω

↓


V
= −

(k↑F)


mπ
( + r) (.)

One can prove from equations (.) and (.) that δ(q, ) = . At T =  the Bose function

in (.) contributes − for ν <  and  otherwise. Scaling out the dimensioned quantities

from eq. (.) we get

∆Ω
V

=

π

(k↑F)


m ∫
∞


qdq ∫



−∞
dω δ(q,ω) (.)

�e phase shi� is non-zero only if ζ as de�ned in (.) (with ν̃ replaced by ω) is positive,

hence both the q and ω integrals are compact, with

∆Ω
V

=

π

(k↑F)


m ∫
√
(+r)


qdq ∫



− 

(+r)

dω δ(q,ω)

⇒
mπ

(k↑F)


(
ΩN
V

) = − ( + r) +

π ∫

√
(+r)


qdq ∫



− 

(+r)

dω δ(q,ω)

(.)

where ΩN is the total free energy of the normal phase. For the fully paired super�uid

phase at unitarity, the free energy is known exactly. Dimensional analysis forces it to

have the form
ΩS
V

= −

π

(
m
 + β

)

/

(µ↑ + µ↓)
/ (.)

�e universal parameter β is found to be β ≈ −. from QMC calculations [] and

β ≈ −. using mean-�eld BCS theory. ΩN/V and ΩS/V are plotted3 in �gure . as a

3Since ΩN is know in terms of kσ
F and ΩS is known in terms of µσ , this is not very straightforward. We

vary r = k↓F/k
↑
F in the range (,.) and calculate ΩN from (.). To calculate ΩS according to (.), we

�rst calculate µ↑ and µ↓ from (.) and �gure .. All the free energies in �gure . appear double valued
over some range, because µ↓/(µ↑ − µ↓) is non-monotonic in r.





function of µ↓; the scaling factor µ↑ − µ↓ is constant throughout a trapped gas in experi-

ments.
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Figure .: Free energy plots; the normal phase seems to always win.

Within our approximations, the SF phase always has higher energy, and we conclude

that the T-matrix approximation underestimates the energy of the normal state. One

can get an upper bound on the normal state energy by neglecting interactions, in which

case the SF phase has a lower energy a�er some point (�gure .). With interactions, the

normal state becomes mechanically unstable before reaching that point.

To investigate themechanical stability of the normal state, we calculate the compress-
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Figure .: Free energy plots for the non-interacting model. �e green curve provides
an upper bound for the energy of the normal state.�e SF wins a�er some point.

ibility matrix ∂µ/∂n,

∂µ
∂n

=

⎛
⎜
⎜
⎝

∂µ↑
∂n↑

∂µ↑
∂n↓

∂µ↓
∂n↑

∂µ↓
∂n↓

⎞
⎟
⎟
⎠

(.)

�is matrix ceases to be positive de�nite for k↓F/k
↑
F ≳ . as shown in �gure . (right).

�e polarization of this instability corresponds to the density ratio n↓/n↑ ≈ ., which

is much smaller than the experimentally observed []

n↓
n↑

≈ .

�is discrepancy highlights a major problem with the T-matrix approach.
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Right: Eigenvalues of the compressibility matrix ∂[µ]/∂[n]. One of the eigenvalues be-
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. Concluding remarks

A naïve calculation without self-energies suggests that the down-spin density vanishes

at µ↓/µ↑ = , while a self-consisten self energy calculation suggests that it vanishes at

µ↓/µ↑ ≈ −.; the experimental value of ∼ −. is somewhere in between. Further,

another naïve calculation without interaction e�ects (�gure .) gives a reasonable value

for when the SF phase has a lower energy, i.e., the radius of the SF core is predicted to

be non-zero, while this calculation with interaction e�ects (�gure .) says that the SF

phase never wins. And �nally, this calculation predicts a dynamical instability at a very

low polarization (�gure ., right), which is not seen in practice. All three artefacts can

be traced to the over-estimation of the attractive interaction; the self-energies calculated

from eqs. (H.) are simply too negative to match experiments.

�e approximation of replacing the self-energies by their values at the Fermi surface

is not too bad, since it is seen that they vary only by a few percents over the entire mo-

mentum range. On the other hand, a static approximation for the self energies, i.e., using

their values at ω = , is not all that good, since they do vary considerably with ω. On the





SF side, however, this static approximation gives excellent agreement with experiments at

unitarity[, ], hence it is not very obvious that including the frequency dependence

on the normal �uid side will solve all our ills.

�is discrepancy can be marginally improved by adding e�ective mass corrections.

�e curvature of Σ↓(k, ) versus k gives an e�ective mass correction ∆m↓, where the

e�ective mass m∗ = m∆m↓/(m + ∆m↓). Adding this to the scattering matrix calculation

yields µ↓ = −.µ↑, which is slightly better.

Some theorists have suggested, based on earlier work on superconductors, that dress-

ing both up and down spin propagators with their respective self energies does not cap-

ture interaction e�ects accurately []. Instead, one should use

Θ(K) =∑
P

Gσ(K − P)G−σ(P)

Since we’re working at vanishing down spin density, our approach automatically boils

down to the case σ =↑, which clearly does not yield an accurate results, and it’s not obvious

why one should use σ =↓. Symmetric extensions of this idea, such as

Θ(K) =


[Θ↑↓(K) +Θ↓↑(K)]

Θ↑↓(K) =∑
P

G↑(K − P)G↓(P)

Θ↓↑(K) =∑
P

G↓(K − P)G↑(P)

have also been proposed [], although justifying such a choice starting from the equa-

tions of motion is not straightforward at best.

It is interesting to note that a non-self consistent calculation, i.e., using bare propa-

gators to evaluate Θ, yields µ↓ = −.µ↑ [], which is close to Monte-Carlo simulations

[, ].�is is e�ectively a summation of a subset of diagrams, and the choice of this

particular subset is hard to justify, especially in the absence of small parameters near

unitarity [].





CHAPTER 

SURFACE TENSION AT A SUPERFLUID-NORMAL INTERFACE

�is chapter represents the author’s contribution to “�eory of the Normal/Super�uid

interface in population imbalanced Fermi gases” by Stefan K. Baur, Sourish Basu, Erich J.

Mueller and�eja N. De Silva []. �e article has been recently accepted for publication

in Physical Review A.

. Introduction

What happens when one tries to polarize a fermionic super�uid? Experiments at MIT

[, , ] and Rice University [, ] have shown that when the fermions are interact-

ing via resonant short range interactions, the �uid responds by phase separating into

a largely unpolarized super�uid region and a less polarized normal region. �e Rice

experiments[, ] show a dramatic distortion of the central super�uid region in their

trapped gas, pointing to signi�cant surface tension in the boundary. In § . we present a

phenomenological model for this boundary to estimate the magnitude of surface tension

necessary to match experiments.

�e phase separation seen in these experiments arises because a zero temperature

conventional s-wave super�uid is unable to accommodate spin polarization: all of the

atoms in one spin state (↑) are paired with atoms of the opposite spin (↓). Changing

the density ratio n↑/n↓ from unity requires adding su�cient energy to break these pairs.

Consequently, when excess particles of one spin state are added to a paired atomic cloud,

those particles simply �oat to the “surface” at a lower chemical potential, forming a nor-

mal �uid. Given that there is a sharp boundary between the super�uid andnormal region,

the order parameter must vary rapidly, producing a surface energy. �is surface energy





“barrier” is the microscopic cause behind surface tension. In § . we present a micro-

scopic BCS-like model with point interactions to calculate this energy barrier and hence

the surface tension.

It is worth noting that the work presented in the rest of this chapter is a slice of a

longer paper []. �e interested reader is advised to check it out for a more detailed

description, including solutions of the Bogoliubov-de Gennes equations at an interface,

and the e�ect of order parameter oscillations.�e portion presented in this thesis is the

author’s contribution to []. Work presented in § . was done in collaboration with

Stefan Baur (�rst author of []), while § . is entirely the author’s original contribution.

. Experimental data

Experiments at Rice [, ] were done with an extremely elongated cigar-shaped trap of

aspect ratio of , and as such the e�ect of surface tension is very striking in the data. �e

N ↑

N ↓

N ↑−N ↓

Figure .: Experimental two-dimensional column densities (black denotes high den-
sity) for P=., with majority atoms (↑) at the top, minority atoms (↓) in the middle, and
their di�erence at the bottom.�e super�uid core, which is where all the ↓-spins are, has
a signi�cantly di�erent aspect ratio. �e sensor is  pixels long (X-axis) by  pixels
wide (Y-axis), where each pixel is . µm. Data used from [], with permission.

experimentalists took ∼ ,  Li atoms in an equal mixture of the two lowest hyper-

�ne states, ∣F = /,mF = ±/⟩. �en using an RF ramp, they spin-polarized the mixture

to di�erent values of P = (N↑ −N↓)/(N↑ +N↓).�e system was allowed to equilibrate at





N ↑

N ↓

N ↑−N ↓

Figure .: Very similar data to �gure ., except P=.. �e di�erence in the aspect
ratios is not as striking at this lower polarization. Data used from [], with permission.

T≪ TF and Gauss, where the two states have a Gauss-wide Feshbach resonance.

�e -D densities were imaged optically (shown in �gures . and .).

At unitarity, the only relevant length scale is the interparticle spacing n−/, which is

∼  µm.�is is much less than the extent of the cloud in either direction, so local density

approximation (LDA) should be quite good at predicting the spin densities as functions

of the local chemical potentials,

µ↑,↓(r, z) = µ↑,↓(, ) −
m

(ωr r + ωzz)

where z is the long axis of the azimuthally symmetric trap. By this logic, isopycnal con-

tours should follow equipotential contours, which clearly does not hold for the ↓-spins in

�gures . and ..�is points to some surface tension between the super�uid core and

the normal shell.

. Phenomenological model

To construct a phenomenological model of surface tension, we assume that the zero tem-

perature population imbalanced atomic system is phase separated into two regions: a cen-

tral super�uid core surrounded by a normal shell. We take the normal state to be fully

polarized (with n↓ = ) and the super�uid state to be fully paired (n↑ = n↓). Although





this is an approximation, the experiments at Rice[, ] are largely consistent with this

ansatz, �rst introduced by Chevy [].

We restrict our discussion to unitarity, where the physics is universal and the super-

�uid and surface energy densities between the super�uid and normal regions have simple

forms.�e equation of state of the central super�uid shell is given at T =  by

ns(µ) = n↑ + n↓ =

π

[
m

ħ( + β)
µ]/ (.)

where µ is the average chemical potential and β is a dimensionless universal many body

parameter [, –]. According to quantum Monte-Carlo calculations β ≈ −.

[, –] while BCS theory gives β = −..�e outer fully polarized normal shell

obeys

nn(r) = n↑ =

π

[
mµn(r)

ħ
]

/

. (.)

�e free energy densities of the bulk phases fs,n = − ∫ ns,ndµ can be written as

fs,n(r) = −

π

(
m
ħ

)
/

ζs,nµ
/
s,n (r) (.)

where ζs = /( + β)/, ζn = /. �en we calculate the total bulk energies ΩS,N =

∫s/n dr fs,n[µ(r), h] by integrating the bulk energy densities over the super�uid/normal

regions.�e surface tension has dimensions of energy per unit area, and since at unitar-

ity the only energy scale is ħn//m and the only length scale is n−/, the surface tension

σ must be, by dimensional analysis,

σ =
ħn/s

m
η(δP/P) (.)

where the dimensionless parameter η is a function of the pressure drop δP across the

interface. In the experiments, δP/P ≪  [], so we approximate η(δP/P) by η = η().

We calculate the total surface energy Edw = ∫ drσ[µ(r), h] by integrating the surface

energy density over the super�uid-normal boundary. Away from the super�uid-normal





boundary, we assume that the system is locally homogenous and the external harmonic

trapping potential Vtrap(r) = b⊥ρ + bzz = mωz(λρ + z)/ is treated in the LDA by

introducing a local chemical potential µ(r) = µ − Vtrap(r).

We make a completely general ansatz for the domain wall, only assuming rotational

symmetry about the long axis of the trap. We parameterize the boundary in terms of

coordinates f and θ, which are related to the cylindrical coordinates ρ and z by

ρ(θ, f ) = RTF f cos θ

z(θ, f ) = ZTF f sin θ
(.)

where RTF =
√
µ/b⊥, ZTF =

√
µ/bz. �e boundary is described by the function f =

F(θ). As shown in appendix A, the two-dimensional integrals for the free energy can

then be simpli�ed to one dimensional integrals, which can be performed numerically.

�e optimal shape is found byminimizing the free energy functional ΩT = ΩS+ΩN+

EDW on the space of functions F(θ) at �xedN↑ andN↓.�e constraints are imposed using

Lagrange multipliers. We expand F(θ) as

F(θ) =
∞
∑
n=

an cos(nθ) (.)

which is compatible with the boundary conditions imposed by the symmetry of the prob-

lem, F′() = F′(π/) = . We truncated this series at a �nite number of Fourier com-

ponents Nc and numerically minimized ΩT with respect to a, a, . . . , aNc . We �nd that

we need to include more terms in this series when η is larger, but for all values of η, the

pro�les become insensitive to Nc for Nc ≳ .

In �gure . we plot the boundary F(θ) that minimizes ΩT for di�erent values of η.

�e boundary becomes almost insensitive to η for high surface tension.�is behavior has

two sources: (i) For large η the ends become increasingly �at, so surface tension plays an

increasingly insigni�cant role, (ii) the edges along the minor axis touch the edge of the
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η=4.0 N ↓

η=4.5 N ↓

Figure .: Experimental two-dimensional column densities (black denotes high den-
sity) for P = . with theoretically calculated boundaries for di�erent surface tensions
η (�xing the number of particles to be constant). Top: majority atoms N↑; Bottom: mi-
nority atoms N↓. �e dotted line is the ellipse with semi-major and semi-minor axes
ZTF and RTF respectively, while the solid line is the super�uid-normal boundary in the
presence of surface tension. As η is increased, the super�uid-normal boundary deforms
from an elliptical isopotential surface, but the boundary becomes increasingly insensitive
to surface tension with increasing η. Nc =  Fourier components were chosen for equa-
tion (.). Data corresponds to Fig. (c) in Ref. [], used with permission. Data outside
of an elliptical aperture has been excluded. �is truncation of the data leads to a slight
discrepancy in P compared to the value quoted in []. Each panel is .mm×.mm,
and shows the true aspect ratio of the cloud.

majority cloud, at which point the super�uid-normal boundary changes to a super�uid-

vacuum boundary and surface tension ceases to be important. Due to this “saturation” of

the boundary shape with high η, and the di�culty of de�ning the boundary from noisy

-D data, we �nd it convenient to follow references [, ] and �nd η by �tting our

theoretical model to the -D axial densities, de�ned by n(a)
↑,↓ (z) = ∫ dx dy n↑,↓(x , y, z). As

illustrated in Fig. ., we improve signal to noise by excluding data outside of an elliptical

window1.

1We discarded all data outside of an ellipse which was chosen so that by eye only pixels with no par-
ticles in them were excluded.�e ellipse was chosen independently for each spin state and each data set.
�is windowing increased the signal to noise while reducing signi�cant systematic biases due to the back-
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Figure .: To pick the “best-�t” η, we �t the theoretical axial density di�erence to the
experimental one from [] correponsing to P = .. χ is de�ned in equation (.).�e
data has been elliptically windowed as in �gure .. η = . �ts this data best.

We de�ne a cost function χ(η) as

χ(η) =

M

M

∑
m=

[(na
↑,expt(zm) − na

↑,theor(zm))

+ (na

↓,expt(η, zm) − na
↓,theor(η, zm))


] (.)

where M is the number of pixels in the z direction, and zm is the position of themth pixel.

We choose the η thatminimizes this χ. Other �tmeasures, such as using∑m∑σ(na
σ,expt(zm)−

na
σ,theor

(η, zm)) give very similar best-�t η-s. We �nd that η ≃  gives an axial density dif-

ference pro�le most closely matching the experimental density from Ref. [] for P = .

and P = .. As seen in �gure ., the overall quality of the �t is quite good. �ere

are however distinct di�erences between the predictions of the model and the observed

pro�les.�ese can largely be attributed to trap anharmonicities which we did not model.

We also believe that the δP dependance of η may be important for capturing the ex-

act shape of the domain wall. Generically one would expect that this dependance would

reduce η at the ends of the boundary, increasing the curvature of the end-caps and mak-

ground. For example by this measure the P = . data has N↑ = , , N↓ = , , while without
windowing N↑ = , , N↓ = , .
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Figure .: Axial densities. Symbols: experimental one-dimensional Li spin densities
and density di�erences for P = . (N↑ = , , N↓ = , ) (le� column) and P =
. (N↑ = , , N↓ = , ) (right column), from Ref. [], with permission. Lines:
theoretical curves for η = ., taking a cigar shaped harmonic trap with small oscillation
frequencies ωz = (π).Hz and ωr = (π) Hz. Oscillations in the density di�erence
within the super�uid region are artifacts of our ansatz (.). To minimize noise, only
experimental data inside an elliptical window was considered (see text).�is aperture is
visible in �gure ..

ing a smoother axial density.�is e�ect would also lead to an apparent polarization and

number dependance of η. Finally, we found some sensitivity to how we treat the back-

ground in each image. For example, if we �t the axial density di�erence at P = . without

windowing the data, we �nd that η =  provides a better �t.

Since they are based upon identicalmodels (just using di�erent ansatz’s for the bound-

ary shape), the quality of our �ts are very similar to the ones found by Haque and Stoof

when investigating a large number of similar pro�les []. Converting to our units,





Haque and Stoof found η = . ± .. �eir result is slightly higher than ours. We at-

tribute this di�erence to di�erences in �tting procedures (such as windowing the data)

and to modeling of the trap. Haque and Stoof used a more sophisticated Gaussian model

for the trap, while we assumed it was harmonic.

. Microscopic theory

As illustrated on the le� of �gure B. in appendix B, at low temperatures there’s a dis-

continuous phase transition between the normal and the paired state, at which point the

free energy F (de�ned in (B.)) is the same on both sides. However, (B.) only holds for

a spatially constant ∆. At a normal-SF interface, ∆ goes from a non-zero value to zero,

and this spatial variation adds to the free energy (B.). In general, we can write the free

energy as a Landau-Ginzburg expansion in the order parameter ∆:

F = ∫ dr [α ∣∆(r)∣

+ α ∣∇∆(r)∣


+ α ∣∇∆(r)∣


+⋯

+ γ ∣∆(r)∣

+ γ ∣∆(r)∣


+⋯

+ gradient terms of order higher than ∆]

(.)

�e terms with spatially constant ∆, i.e., α, γ, γ, etc. are contained in (B.). Here

we calculate the terms with coe�cients α, α, etc. We neglect gradient terms higher

than O(∆), an approximation well-justi�ed near the tricritical point. �is approxima-

tion however introduces a signi�cant error at T = . For the terms which are quadratic in

∆, we go to all orders in the gradient. We will see that as the temperature is lowered, α,

α etc. successively become negative and the system is stabilized by higher gradients.�e

terms are readily read o� from a path integral representation of the partition function.

We use aHubbard-Stratonovich transformation (detailed in appendix C) on the usual

two-particle point interactionHamiltonian. Taking the log of the partition function (C.),





we get the terms in the free energy that go as ∆

F = −∑
k

χ(k) ∣∆(k)∣ (.)

�e term with coe�cient α in (.) appears in bothF in (B.) and inF above. To avoid

double-counting, we subtract the k =  (spatially homogenous) term from F. In other

words, the free energy a�er adding F to F is

Ftotal = F −∑
k
(χ(k) − χ()) ∣∆k∣

 (.)

where we’ve freely switched between k and k because χ(k) depends only on k, which

is the magnitude of k. �e function χ(k) is the static (ν = ) limit of the more general

two-particle propagator of equation (.), and is of general importance in themany-body

problem of the BEC-BCS crossover of spin-polarized fermions, such as T-Matrix approx-

imation schemes [] and the �nite-momentum pairing instability of the polarized nor-

mal phase to the FFLO phase [, ]. At T = , the integral in equation (C.) can be

done analytically to yield the result in equation (.), of which we only need the static

part (since ∆ is time-invariant). At �nite T, the integral (C.) has to be done numerically.

�e normal state becomes locally unstable towards �nite q pairing when the coe�cient

of ∣∆q∣

in equation (C.) becomes negative, or

χ(q, ) −

U

= 

Above the tricritical point, this�ouless criterion locates the second order phase bound-

ary, while below the tricritical point it yields the spinodal of the �rst order phase transi-

tion.

Explicit expressions for the coe�cients α, α, α,⋯ of (.) are found by expanding

χ(q) in powers of q.�e exact pro�le of ∆ at the domain wall between the normal ∆ = 

and the super�uid ∆ = ∆ can be found by minimizing Ftotal of (.), where ∆(r) =





Vol−∑q e iq⋅r∆q. Since we’re interested in the surface energy of an interface with zero

curvature, we use the ansatz

∆(r) = ∆(z) =
∆


(erf(z/Wdw) + ) (.)

which goes smoothly from ∆(z → −∞) =  to ∆(z → ∞) = ∆, and has the advantage

of having a tractable Fourier transform (so that ∆q can be handled analytically). For a

given βµ̄, we assume we’re at the critical polarization (hc in �gure B., le�) for a discon-

tinuous phase transition between the SF and the normal phases, and calculate ∆ from

equation (B.). Using our ansatz for ∆(r), we minimizeFtotal with respect to Wdw, which

is a measure of the width of the domain wall. Figure . shows the resulting temperature
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Figure .: Width (Wdw) of the domain wall as function of inverse temperature (β) at
unitarity, with parameters measured in terms of the chemical potential µ and kF = πns.
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dependance of the domain wall at unitarity. As can be seen, the domain wall diverges at

the tricritical point. Using the same notation as in appendix B, the super�uid density ns

is given by

ns =

π

(
m
ħβ

)

/

∫
∞


dy y [ − (

y − βµ
Ey

)
sinh Ey

cosh Ey + cosh βh
] (.)

using ∆ = ∆.

�e surface energy of the interface for a givenWdw is foundby integratingFtotal(∆(z))

across the interface in the z direction, which by de�nition is the surface tension σ. Using

ns from (.), we evaluate η as de�ned in equation (.) for the optimal Wdw at each βµ.

�e result is shown in �gure ., which also shows what this surface tension would be if





we expand χ(q) to either quadratic or quartic order in q.�is corresponds to truncating

(.) at α or α. While these latter approximations work well around the tricritical point,

they do not correctly describe the low temperature physics: both α and α change sign

at low temperature, and without the in�uence of higher order terms, the normal state

becomes unstable to a FFLO state, and the surface tension vanishes. Using the full χ, we

�nd that as T → , the dimensionless surface tension becomes η ∼ ..�e discrepency

between this result and the best-�t η from �gure . can be ascribed, at least in part, to

the neglect of gradient terms higher order in ∆. While these terms are unimportant near

the tricritical point, as T → , ∆ becomes large and these terms become signi�cant. It is

likely that the kink in �gure . is also a result of this truncation.





CHAPTER 

A “DILUTION FRIDGE” OF COLD ATOMIC VAPORS

�is chapter presents unpublished work.

. Motivation

We present a method of cooling a gas of cold Fermions, which is analogous to a tradi-

tional dilution refrigerator. �is analogy is interesting in its own right; cold gas physics

is a direct descendant of low temperature physics. Further, we �nd the e�ciency of this

cooling method to be comparable to that of evaporative cooling.

A conventional He-He dilution fridge, �rst proposed by H. London in , works

by utilizing the latent heat ofmixing of He in He [].�e phase diagram of He in He

is illustrated in �gure . (le�).�ere is a �rst order transition between a He-rich phase

and a He-poor phase. Consequently, at low temperatures amixture of He and Hephase

separates into these two phases. �is phase separation is analogous to a half-�lled �ask

of water; the lower half of the �ask is rich in water and poor in air, whereas the upper half

is rich in air and poor in water. When a water molecule evaporates from the water-rich

phase to the water-poor phase, it crosses a �rst-order phase boundary and absorbs some

latent heat, cooling the �uid near the phase boundary. �e He can be considered to be

a “vacuum” for He atoms; whenever a He atom “evaporates” from the He-rich phase

to the He-poor region at a �xed temperature (right to le� across the phase separated

region), it absorbs latent heat and cools the He-rich phase, as well as anything in contact

with the �uid. Figure . (right) illustrates the geometry of a dilution refrigerator based

on this e�ect.

�e entire bottom portion of the tubing in �gure . (right) is �lled with He, and He
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Figure .: Le�: He-He phase diagram at standard pressure. Right: Schematic of a
traditional dilution fridge. Progressively deeper shades of red indicate higher He tem-
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is introduced into the mixing chamber. Since He has a lower mass density, it �oats on

the top, but some of it dissolves into He, depending on the equilibrium percentage at

that temperature. A vacuum pump forces evaporation from the surface of the He-He

mixture in the still, illustrated on the right of �gure .. Since He has a higher vapor

pressure by virtue of being lighter, it is preferentially removed. �is depletes the He-

He mixture of He, which is then drawn into the mixture from the mixing chamber to

maintain the equilibrium concentration. �is process absorbs energy (the latent heat of

mixing), cooling the mixing chamber and anything in contact with it. Such refrigerators

can reach temperatures of a few milliKelvins.�e practical limit is set by heat loss due to

recycling the He from the still to the mixing chamber.

One key fact that allows this setup to work is the non-zero concentration of He in

the He-poor phase (the He-Hemixture) even at T = .�is means that no matter how

low the temperature, there is always a non-zero �ux of He into the mixture inside the





mixing chamber, and therefore a non-zero cooling rate.

�e phase diagram of a He-He mixture is topologically identical to the phase di-

agram of a spin-polarized fermi gas (�gure .), with the excess up-spins playing the

role of He, and the pairs playing the role of He. Consistent with this picture, clouds
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Figure .: Phase diagramof a spin-polarized fermi gas of Li at unitarity, courtesy Yong-
il Shin [].�is is topologically identical to the He-He phase diagram in �gure .. We
will see that unlike this picture, there exists a partially polarized super�uid phase at T = 
on the BEC side of a Feshbach resonance.

of spin-polarized Fermi gases display a fermion-poor super�uid core and a fermion-rich

normal shell with a polarization and density discontinuity at the boundary (see, e.g., �g-

ures ., . and .). Due to this analogy with He-He mixtures, one would expect that

if one could drive a �ux of fermions from the normal to the super�uid phase, the latent

heat of mixing would cool the boundary.�e value of this cooling technique is that one

would expect it to continue working at very low temperatures, even below those at which

evaporative cooling becomes impractical. Here we evaluate the feasibility of this scheme,





proceeding in three steps. First, we generate the phase diagram for a polarized Fermi

gas. Second, we need to calculate the latent heat of mixing, both to �nd its magnitude

and sign.�ird, we estimate the “e�ciency” of this cooling, i.e., the fractional decrement

in temprature achieved for some fractional loss of particles (analogous to the pumping

of He from the still). Additionally, we develop a protocol for implementing the cooling

scheme.

. Phase diagram

Deep in theBECphase, a spin-polarized fermi gas can bemodeled as amixture of fermions

and bound molecules, or bosons, with the Hamiltonian

H =∑
k
(єk − µ f )ψ†kψk +∑

k
(Ek − µb)ϕ†kϕk

+
gbb
 ∑kpq

ϕ†k

+pϕ

†
k

−pϕ k


−qϕ k


+q + gbf∑

kpq
ϕ†k

+pψ†k


−pψ k


−qϕ k


+q

(.)

where ψ is a fermion operator and ϕ is a boson operator. Since the fermions are spin-

polarized and the interactions are short-ranged, the Pauli exclusion principle forbids any

direct interaction. Deep in the BEC phase, the couplings constants are related to the

scattering lengths as gbf ,bb = πħabf ,bb/mbf ,bb wherembf = mbm f /(mb+m f ) andmbb =

mb. By solving the three- and four-body problems one �nds that the fermi-bose and

fermi-fermi scattering lengths in this limit are abb = λba = .a [, ] and abf =

λ f a = .a [] where a >  is the atom-atom scattering length.

We need to calculate the free energy of this interacting Bose-Fermi system. In the di-

lute limit na ≪ , there are a number of candidatemean-�eld theories we can use for this

calculation. Even for the simpler case of interacting bosons, there is a zoo of approaches

such as Hartree-Fock, Bogoliubov, Hartree-Fock-Bogoliubov, Hartree-Fock-Popov, etc.





However, in this case, we’re interested in the low temperature thermodynamic proper-

ties of the system, such as speci�c heat and enthalpy of mixing. For those properties, it

appears that that Hartree-Fock mean �eld theory yields results that are only marginally

improved by the more sophisticated theories [].�erefore, we will use a Hartree-Fock

approximation for the interacting bosons.

At temperatures below the BEC temperature for the bosons, a fraction of the bosons

will be bose condensed. In other words, the bose operators can be written as

ϕk = αδk, + ( − δk,)ϕk

where α is a complex number and ∣α∣ is the condensate density (without loss of generality,

we assume α is real). Introducing another mean �eld nex = ∑′
k ⟨ϕ

†
kϕk⟩ and neglecting

quartic �uctuations, the bosonic part ofH becomes

Hbosons = −µbα +
gbb


α +
′
∑
k

(Ek − µb + gbbα + gbbnex)ϕ†kϕk − gbbnex

in which a primed sum goes over all k ≠  states. Adding the fermionic part and the

bose-fermi interaction (treated within Hartree-Fock), the total Hamiltonian is

H = −µbα +
gbb


α − gbbnex − gbfnbn f +
′
∑
k

(Ek − µ̄b)ϕ†kϕk +∑
k

(єk − µ̄ f )ψ†kψk (.)

where nb = α + nex, n f = ∑k ⟨ψ†kψk⟩, µ̄b = µb − gbbnb − gbfn f and µ̄ f = µ f − gbfnb.�is

Hamiltonian is diagonal in the operators, and hence the free energy per unit volume (A)

at �nite temperature is straightforward to calculate:

A =(−µb + gbfn f )α +
gbb


α − gbb(nb − α)

−

√
mb

πβ/
G/(βµ̄b) −

√
mf

πβ/
F/(βµ̄ f )

(.)

where F and G are Fermi-Dirac and Bose-Einstein integrals,

Fk(x) = ∫
∞



yk

e y−x + 
dy Gk(x) = ∫

∞



yk

e y−x − 
dy (.)





Although both the chemical potentials µ f , µb and the densities nb, n f , α appear in these

expressions,A should be viewed as a function of µb and µ f .�e densities aremean �elds,

which themselves should be viewed as functions of µb and µ f .�ese mean �elds can be

de�ned in one of two ways, either the free energy should be stationary with respect to

their variations,

∂A
∂α

∣
µb ,µ f ,nb ,n f

= 
∂A
∂nb

∣
µb ,µ f ,n f

= 
∂A
∂n f

∣
µb ,µ f ,nb

= 

or that they satisfy the self-consistency relations1

nb = −
∂A
∂µb

∣
µ f

n f = −
∂A
∂µb

∣
µb

While not completely obvious, these two sets of conditions are equivalent. Extremizing

A with respect to the condensate density, ∂A/∂α =  yields

α =

gbb

(gbbnb + gbfn f − µb) (.)

which is the usual Bosonic Hartree-Fock result with an extra gbfn f term accounting for

interaction with the Fermions. We adimensionalize the variables with the following sub-

stitutions: n f = x/a, nb = y/a, gbf = πaλ f /m, gbb = πaλb/m, µb, f = νb, f /ma and

β → βma.�en in the presence of a condensate (α > ) the conditions ∂A/∂n f =  and

∂A/∂nb =  reduce to

x −


π/β/
F/ [β(ν f − πλ f y)] = 

y −

πλb

(νb − πλ f x) +


πβ/
G/ [β(νb − πλb y − πλ f x)] = 

(.)

while in the absence of a condensate (α = ), such as above the BEC transition temper-

ature,

x −


π/β/
F/ [β(ν f − πλ f y)] = 

y −


πβ/
G/ [β(νb − πλb y − πλ f x)] = 

(.)

1Note that the condensate density still has to be determined by ∂A/∂α = , since there’s no “chemical
potential” for the condensate.





�ese equations are nonlinear, and there is not a unique solution for a given µ f , µb and β.

A major di�erence between the cold atom systems and liquid Helium is that the atomic

gases are highly compressible. Consequently, the relevant phase diagram is three dimen-

sional, in (µb , µ f , T) or (nb , n f , T), and we need to solve not one but two equations si-

multaneously to �nd the phases.

.. Zero temperature

At T =  or β = +∞, Gk(βν̄b) →  while Fk(βν̄ f ) → (βν̄ f )
k+/(k + ). For ν f , νb < ,

equations (.) are only satis�ed by x = y = . In other regions, equations (.) generically

have three types of solutions, (i) x = , y > , or a Bose phase, (ii) x > , y = , or a Fermi

phase, and (iii) x > , y > , or a mixed phase. In the parameter space of ν f and νb, the

Fermi phase coexists with the Bose and mixed phases over certain regions, resulting in

two discontinuous phase boundaries.�e phase diagram is shown in �gure .. Even at

T = , the system has a mixed phase of bosons and fermions, analogous to the “mixed

phase” of % He and % He in �gure ..�is means that if this system can be made

into a dilution fridge, cooling will be possible at arbitrarily low temperatures.

.. Finite temperature

At �nite temperature, the dash-dotted line in �gure . disappears, leaving only a phase

transition between a bose-condensed phase B and a normal phase F, such that nBf < nFf ,

as shown in �gure .. Since the boson density (and hence νb) required for bose conden-

sation goes up with temperature, the phase boundary in �gure . (and Pc in �gure .)

moves upward with decreasing β. �ese lines are the �nite temperature versions of the

dashed curve of �gure ..�e solid curve between the origin and Pc in �gure . turns
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f ). �e dash-dotted line separating the bose phase from the

mixed (bose+fermi) phase is νb = (λb/λ f )×ν f and the solid curve separating themixed
phase from the fermi phase is νb = /λ f ν

/
f /π. �e dash-dotted line depicts the triv-

ial phase transition between a Fermi vacuum and a Fermi sea, and disappears at T > .
�e solid line, however, is a non-trivial second order phase transition associated with
the emergence of a pairing order; for T > , this curve turns into the second order BEC
transition curve, while the dashed line turns into the �rst order BEC transition curve. Pc,
which shi�s with changing temperature, is a tricritical point.

into second order bose condensation curves (not shown) in �gure ..

. Latent heat

�e free energy de�ned in (.) A = (E/V) − µ f n f − µbnb − T(S/V) can be related to

pressure using a Gibbs-Duheim relation:

A = −P

which means that the pressures on two sides of a norma-super�uid interface are equal,

which is expected; for example, in chapter  we argued that the pressure drop across a �at
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and separate a fermi-poor phase where some of the bosons are condensed from a fermi-
rich normal phase. At T increases (β decreases), a higher boson density is required for
condensation, which is why the lines move upward in the �gure with decreasing β.

interface is zero, because if it weren’t, the interfacewouldmove. However, when a fermion

is transferred from phase F to phase B, the entropy change is not the same on both sides

(exactly as in the He-He case).�e resultant latent heat of mixing per fermion is given

by
ðQ
∂N f

∣
P,T

= T
⎡
⎢
⎢
⎢
⎢
⎣

∂SSF
∂N f

∣
P,T,Nb

−
∂SN
∂N f

∣
P,T,Nb

⎤
⎥
⎥
⎥
⎥
⎦

(.)

Since we want to keep pressure – which is a function of the densities and chemical poten-

tials – constant, evaluating this derivative is a lengthy exercise detailed in appendix E..

�e resulting latent heat per particle is plotted in �gure .. �e latent heat drops with
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Figure .: Latent heat of mixing per fermion along the phase boundary, as per equa-
tion (E.). �e lines above follow the phase boundaries as de�ned by the correspond-
ing lines in �gure ., except that in �gure . the β/ma =  is almost on top of the
β/ma =  line, and is therefore not shown.�e latent heats extend over a large range,
and hence are presented on a log scale. We will see later that β/ma =  is a plausible
operating point.

temperature, which re�ects the expected trend that it becomes harder to cool as we lower

the temperature.





. Cooling e�ciency

For any cooling technique that relies on loss of particles, it is customary to characterize

it by a cooling e�ciency η,

η =
log[T�nal/Tinitial]
log[N�nal/Ninitial]

or its di�erential form

η =
∆T/T
∆N/N

(.)

Given that we’re working in a two-component system, one has several choices for which

N to use in this de�nition; we use the total particle number, so ∆N/N ≡ ∆N f /(N f +Nb).

A larger η is better, as one wishes to cool as much as possible while minimizing atom loss.

To calculate ∆T, we need the speci�c heat,

CP = T
∂S
∂T

∣
P,N f ,Nb

whose calculation is detailed in appendix E.. If a fermion loss ∆N f results in a temper-

ature change ∆T, then

∆N f × T
∂S
∂N f

∣
P,T,Nb

= CP∆T

In terms of the functions Φ(x , y), Γ(x , y) and κ(x , y) de�ned in (E.) and (E.), we

arrive at
N f

N
[(Φ +

Γ
x
)
SF

− (Φ +
Γ
x
)
N

] =


β(x + y)N
[Φ −

Γ

κ
]
∆T
T

(.)

We assume that the system stays in thermal equilibrium, so that the heat lost is distributed

evenly throughout the normal phase.�is then yields

η =
∆T/T
∆N f /N

=
β(x + y)N {[Φ + Γ

x ]SF −
[Φ + Γ

x ]N
}

[Θ − Γ

κ
]
N

(.)

�e cooling e�ciency is plotted in �gure . for each phase boundary in �gure .. For

comparison, a typical evaporative cooling e�ciency is η ∼ , while under optimal condi-

tions one can �nd η = .
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Figure .: Cooling e�ciency as de�ned in equation (.) and calculated by (.). As
expected, it becomes harder to cool as the temperature drops. Also, these numbers do
not include any loss mechanism other than pumping out the fermions.

Evaporative cooling (see appendix D.) works by the expulsion of highly energetic

particles and the thermal equilibriation of the remaining cloud. In theory, an in�nitely

large η can be obtained by letting only particles with energy ∼ ηkBT escape. However,

the fraction of particles expelled, ∼ η/e−η, goes down exponentially and thus cooling

time goes up exponentially with η. In practice, particle loss due to inelastic collisions

always limits the cloud lifetime, setting a practical constraint on the maximum cooling

time.�us, η is limited by a competition between the loss of high-energy particles (that

result in cooling) and the loss of all particles (due to inelastic scattering).

�e same factors which limit η for evaporative cooling will also limit η in our scheme.

In other words, ∆N/N can be broken down into ∆Ncooling/N + ∆Nloss/N, where the �rst





part results in cooling and the second part does not. So far, we’ve only calculated η due to

the �rst part. To calculate the second part, we note that for fermions deep in the BEC side

of resonance, the three main loss mechanisms are (i) background loss due to imperfect

vacuum around the trap and laser �uctuations, (ii) three-body inelastic collisions F+F+

F′ → F + (FF′), where F and F′ are fermions in di�erent states and (FF′) is a bound

molecular state, and (iii) two body inelastic collisions such as (FF′)+ F → (FF′)− + F or

(FF′) + (FF′) → (FF′)− + (FF′) where (FF′)− is a deeply bound molecular state. �e

particle loss rate due to these processes needs to be compared with the pumping rate.

A�er estimating the maximum possible pumping rate in § ., we will analyze how it

compares with inherent particle loss mechanisms (§ .., .. and ..).

. Cooling geometry, or the nuts and bolts

Figure .: Pumping scheme to achieve cooling. �e solid arrows denote removal of
fermions from the super�uid (SF) shell in the center, while the dashed arrows denote
di�usion of fermions from the normal to the super�uid phase at the boundary.�e blue
shading is the trapping laser, while the red shading, as will be explained below, is the
evaporating or pumping laser.

For the above-mentioned scheme to work, we need to selectively pump out fermions

from the super�uid region (�gure .), which lies at the center of the trap. It is noteworthy

that even without the mechanism we’re describing, removing atoms may cool or heat

the gas, in part depending on the energy distribution of the particles removed. Close to

Fermi degeneracy, for example, all fermions have energies close to єF/, so removing





some has a minimal e�ect on the temperature. Far above Fermi degeneracy, removing

particles with є ≫ kBT cools the gas while removing particles with є ≪ kBT heats it.

For pumping out fermions from the super�uid region, we propose driving a Raman

transition between ∣/,+/⟩ and ∣/,+/⟩ using two counterpropagating lasers at slightly

di�erent frequencies. �e two-photon momentum kick will be su�cient for expelling a

light atom such as Li from the trap.

As we’ll see in chapter , atoms (fermions) and molecules (bosons) can be spectro-

scopically distinguished due to the binding energy of the latter, and hence one might

think that a simpler, single photon mechanism such as an RF pulse or a laser tuned at

the right frequency can selectively target fermions in the red shaded region in �gure ..

�is, however, is not feasible. At an operating point of Gauss (justi�ed later), the

binding energy between ∣/,+/⟩ and ∣/,−/⟩ is . KHz, while the natural linewidth

of the  nm ( THz) S/ → P/ optical transition is almost MHz [].�erefore,

a single-photon optical transition would not be selective enough to knock the fermions

out. On the other hand, although the MHz splitting between ∣F = /⟩ and ∣F = /⟩

[] allows for a narrow RF transition, such a transition would not give enough recoil

kick to the fermion to expel it from the cloud.

A two-photon Raman transition between ∣/,+/⟩ and ∣/,+/⟩ would allow both a

narrow linewidth as well as a big recoil kick. At Gauss, the di�erence in those en-

ergy levels is about GHz [, ], so the linewidth is MHz × (GHz/THz) =

.nHz. While in reality the linewidth is larger than this ideal value, it’s still less than

a Hz, so speci�cally targetting the fermions with a Raman transition is entirely possi-

ble.�e recoil temperature of Li from a  nm photon is . µK, which is already much

higher than the trap depth, so the recoil from two of those photons will be more than

su�cient to knock it out of the trap.





While the bound and unbound fermions can be spectrally distinguished, the Raman

lasers couple equally well to fermions everywhere in the trap. �is is a consequence of

the fact that the di�erence between the AC Stark shi�s of ∣/,+/⟩ and ∣/,+/⟩would be

the same throughout the trap. By focusing the lasers, one can crudely target some regions

spatially. In particular, we saw in chapter  that the super�uid phase occupies most of the

volume near the trap center (e.g., �gure .). �us, if we train our “evaporating” lasers

crosswise (perpendicular to the long axis) through the center of the trap, most – if not all

– of the fermions we kick out will be from the super�uid phase2.

�e transfer of atoms from the normal to the super�uid phase is not instantaneous,

and our calculation is only valid if we pump atoms out slower than the equilibriation rate

of the cloud. �e cooling rate is limited by the time a cloud of fermions in a harmonic

trap take to equilibrate a�er being depleted from the center. In the strongly interacting

regime, transport is di�usive; the equilibriation time will be determined by the di�usion

coe�cient, which in turn depends on the fermion scattering rate.

For a bose-fermimixturewith spin-polarized fermions at low temperatures, the fermions

can relax only by collision with the bosons.�e collision rate per fermion (or the inverse

of the mean free time) is given by[]

Γf =

η
nbσb f vb f

where σb f = πab f = πaλ

f is the bose-fermi scattering cross section and vb f = (kBT/πµ)/

is the thermally averaged relative collision speed between bosons and fermions with the

reduced mass µ = m fmb/(m f +mb) = m/. For m f = mb/, the dimensionless param-

eter η ≈  []. To be su�ciently deep in the BEC phase, we can choose kF↑a =  []

2Another geometry could be to use a spatial separation of the normal and super�uid phases. As seen
in recent exeriments[], in an optical trap with an additional o�-center magnetic trap, the super�uid
and normal phases are spatially separated with a �at boundary between them. Such a pro�le would make
it easier to target only the super�uid phase for evaporation. Further, double-well traps could possibly be
engineered where the two phases reside primarily in two di�erent potential minima, but to date we do not
know of anyone of having actually done such an experiment.





where kF↑ = πn↑.�en β = TF↑/T, and the collision rate becomes

Γf = єF↑(nba)λf (
π
β

)

/

(.)

�e di�usion constant D = vb f /Γf is given by Fermi liquid theory as

D =


m(πβ)/(nba)λf
(.)

As shown in detail in appendix F, the upper limit on the pumping rate with this di�usion

constant is
dN
dt

= ωr

√
/(α − )(nca)(ωF/ωr)



αβλf (nba)
(.)

where α = ωr/ωz, ωr (ωz) being the radial (axial) trapping frequency of a cigar-shaped

harmonic trap, ωF = єF↑/ħ, and nc is the central density of excess fermions.

To use our results for β =  we choose T = TF/, which also ensures the existence of

a Bose condensate in the fermion-poor phase. To �nd the operating point on the β = 

curve of �gure ., we note that on the normal side (n f +nb)a = /π, which happens at

µ fma = .. At that point, on the super�uid side nba = .. For typical central den-

sities of n↑ ∼ m− for Li [, ], we get єF ≈ nK ≈ KHz. For these parameters

and α = , nc/nb ≈ ., ωr = π × Hz [],

dN
dt

≈  s− (.)

�is is an optimistic upper limit because of certain simplifying assumptions made in

appendix F, such as the number in the bleached region being equal to the central density

times some �xed width3. Nevertheless, this tells us that we can pump ∼  particles per

second while keeping the system in local equilibrium. �e practicality of this cooling

scheme rests on the comparison between the rate in (.) and the loss rates listed in

§ ..
3Another very important assumption made in appendix F is that once the center is depleted, fermions

from all over the trap �ow in to restore the central density. In practice, the fermions in the edge (normal
phase) are collisionless, and will therefore have a low di�usion coe�cient. If we only consider the trap to
extend to the edge of the super�uid state (which is equivalent to using ωz ≈ π× Hz or α ≈ ) [], then
this upper limit is reduced by a few percents.





.. Background loss

At a pressure of − Torr, typical of cold gas experiments, the ambient air density is n ≈

. × m−, and the thermal velocity at K is v ≈ m/s. �e scattering cross

section between a cold atom and an air molecule is just their area, which is ∼ (Å), and

given that there are typically  particles in a trap, the total cross section is σ = −m.

�erefore, the background scattering rate is

Γback = nσv = . s− (.)

For a trap with  particles at the start, the initial particle loss rate due to background

scattering would be ∼  per second.�is rate is much lower than the rate from (.),

and can thus be neglected. In typical experiments, the background decay rate is several

tens of seconds[], and is almost never a limiting factor on the cloud lifetime.

.. �ree-body collisions

On the BEC side, the number of three-body recombinations ↑ + ↑ + ↓→↑↓ + ↑ per unit

time per unit volume is[]

Γ−body ≈
a

m
n/↑ n↓

while the spin-�ipped version ↑ + ↓ + ↓→↑↓ + ↓ has the same rate with the spin indices

�ipped. Since for our system there are no excess ↓-spins, i.e., n↓ = , this recombination

rate is zero, and we do not have to worry about this loss mechanism.





.. Two-body collisions

Two-body collisions can be either fermion-boson or boson-boson. In both cases, one of

the resulting components is a deeply bound molecule, denoted (↑↓)−. Near a Feshbach

resonance on the BEC side, the collision rates are proportional to a−. for ↑ + ↑↓→↑ +(↑↓

)− events and a−. for ↑↓ + ↑↓→↑↓ +(↑↓)− events[]. �e proportionality constants

are system-dependent, and this stabilization of dimers near a Feshbach resonance have

been observed experimentally for Li [, ] and K [].

At given densities, kF↑a =  is achieved at Gauss, where the -body scattering

lifetime τ−body was observed to be ≥  s []. In other words,

dN−body
N

= −
dt

τ−body
(.)

So if we start with ∼  fermions in our trap, we will start losing particles at  per

second due to this e�ect.

Comparing the three lossmechanisms above with the possible pumping rate in (.),

we can see that if in a given time ∆N f fermions are pumped out by a laser, another ≈

.∆N f will be lost to inelastic two-body collisions. In other words, in (.), we need

to multiply the denominator by . to account for losses. �is will reduce all the η-s in

�gure . by %. So for example for β =  and µ fma = ., with losses, η = . instead

of .. While this is slightly lower than good evaporative cooling schemes, the fact that

this scheme kicks in a�er the evaporative stage still makes this a viable �nal stage.





CHAPTER 

FINAL-STATE EFFECTS IN THE RF SPECTRUMOF STRONGLY INTERACTING

FERMIONS

�is chapter was adapted from “Final-State E�ects in the Radio Frequency Spectrum of

Strongly Interacting Fermions” by Sourish Basu and Erich J. Mueller, published in Physical

Review Letters ,  () [].

Canpairing between fermions be detected by spectroscopy? Spectroscopy is routinely

employed to characterize the rotational and vibrational states of molecules [] (many of

which are difermionic), and a spectroscopic measurement of the superconducting gap in

a traditional superconductor was one of the �rst validations of the BCS theory [, ].

One should therefore be able to detect the formation of fermion pairs in cold atomic gases

in the BEC-BCS crossover region by spectroscopy. In the presence of pairs, the spectrum

of such a gas should consist of a sharp symmetric peak corresponding to an excitation of

the free fermions, and an asymmetric continuum due to the dissociation of pairs.

Markus Greiner and colleagues used this idea to demonstrate the formation of K

molecules on the BEC side of a Feshbach resonance []. At T > TBEC, their trap held a

mixture of atoms and molecules in chemical equilibrium, which yielded a temperature-

broadened bimodal radio-frequency (RF) spectrum: a relatively sharp peak from the ex-

citation of the atoms, and a broader peak from the dissociation of the molecules. �e

o�set between the two was a measure of the binding energy, which agreed with a simple

two-body calculation of molecular binding energy (appendix G).

Later experiments observed similar bimodal spectra on the BCS side [, ], and

by analogy interpreted them to be signatures of Cooper pairing.�is interpretation was

bolstered by theoretical calculations showing that �nite temperature paired fermions in





a trap would indeed exhibit a bimodal spectrum [, ]. However, that conclusion

has been called into question recently with the discovery that even an unpaired Fermi

gas at a �nite temperature can give rise to a bimodal spectrum, purely by being in a trap

[, ].

�e question of whether fermion pairing has a spectroscopic signature can be settled

if the signals from di�erent density regions, or di�erent parts of the trap, can be tomo-

graphically resolved. One way of doing this for a cylindrically symmetric trap is via an

inverse Abel transform, which gives us density-resolved spectra at the cost of lower signal

to noise [].

Interpreting the tomographic spectra of [], and later [], was non-trivial because

of �nal-state interactions; instead of two strongly interacting fermionic species, experi-

ments [, , ] were done in a regime where there were three strongly interacting

fermionic states, due to the presence of several close-by Feshbach resonances.

In this chapter, we present a theory of RF spectra in the presence of �nal state in-

teractions across the BEC-BCS crossover region. Depending on the parameter range, a

spectrum of a homogeneous system can be unimodal or bimodal at T = . In particular,

on the BCS side the spectrumneed not always be bimodal despite the existence of Cooper

pairs. We identify the physical processes behind the peaks and continua, and place ex-

periments [, , ] in their proper regions in the parameter space of interactions1.

1�e chronology of events that led up to this is interesting. We initially tried to explain the distinctly
non-BCS lineshapes of [], in part motivated by the explanation of [] on the BEC side. A�er going
through with the theory, we discovered an additional feature, viz. a symmetric δ-function peak, that []
had not observed. Some months later, Wolfgang Ketterle presented RF spectra at a conference that had
an unexplained feature: a symmetric peak! �ey were exactly where we expected them to be. Happy
coincidence prevailed, and we published our results [] almost simultaneously with [].





. Introduction

Radio frequency (RF) spectroscopy may become a powerful probe of the many-body

state of a gas of cold atoms. One indicator of this potential is the sharpness of hyper�ne

spectral lines []: orders of magnitude smaller than the ∼ kHz interaction strengths

found in interacting clouds of lithium atoms. As cold atom experiments begin probing

exotic states of matter, this separation of energy scales may allow one to detect subtle

atomic correlations.

Despite this optimistic viewpoint, there appears to be major theoretical holes in our

understanding of RF spectra, even at a qualitative level. �e primary di�culty is that

when radiowaves change the hyper�ne spin of an atom, the entiremany-body state needs

to adjust. Including these �nal state interactions is a nontrivial many-body problem,

akin to the one which must be solved to understand the X-ray spectra of metals [].

�ese are hard problems – there is no generic prescription for including these �nal state

interactions, rather the solution will depend on the system at hand. Here we present a

variational calculation in which we calculate the radio frequency spectrum of a strongly

interacting super�uid two-component Fermi gas, including arbitrarily strong short range

interactions in the �nal state. We �nd structure in the spectra which have not previously

been theoretically described.

We consider a model where a gas of neutral Fermions occupy two di�erent hyper�ne

states ∣⟩ and ∣⟩. Radio waves drive a transition from ∣⟩ to a new hyper�ne state ∣⟩.

Interactions between atoms in the three states are described by scattering lengths a, a,

and a.

Previous approaches to understanding the RF spectrum of a super�uid Fermi gas

have either neglected �nal state interactions [, –, ], or included them with





sum rules [–], diagramatics [], or energy arguments []. Many of these pre-

vious works focussed on trying to gain quantitative understanding of the spectra for very

speci�c parameter values. Here we present a straightforward variational approach which

complements these other works: we focus on gaining a global picture of the qualitative

structure of the RF spectrum for all parameter values. While elementary, our formalism

is quite powerful – as was kindly pointed out to us by Giancarlo Strinati, it is equivalent

to the zero-temperature limit of the BCS-RPA theory used by Perali et al. [] to explore

the unitary limit.

Final state interactions can qualitatively change the RF spectrum. For example, in

early experiments [] with the three lowest hyper�ne states of Lithium atoms 2 , �nal

state interactions nearly canceled out the contribution from interactions in the initial

state.�is is due to the proximity of three wide Feshbach resonances: B = G (∆B =

G), B = G (∆B = G) and B = G (∆B = G).�e scattering lengths,

which diverge on resonance, all become large at the same time. When a ≈ a, the

interaction e�ects cancel []. Later experiments [, , , , ] foundnontrivial

spectra – some of which were used as evidence of pairing in these gases.

. �e model

Here we use a BCS ansatz for the initial state, and a restricted set of �nal states which

includes only “coherent" excitations: the quasihole created in state ∣⟩ has the same mo-

mentum as the excited atom.�e neglected excitations will shi� our spectral lines and in-

troduce broadening, however our approach should capture the qualitative features of the

spectrum. Our approach is exact in the limiting case of a = a, where the spectrum is

2∣⟩, ∣⟩, ∣⟩= ∣/, /⟩, ∣/,−/⟩ ∣/,−/⟩ where ∣F,mF⟩ are their zero-�eld quantum numbers





a single delta-function peak at its free space value. Furthermore, when a = , it reduces

to the BCS result: a broad asymmetric peak corresponding to the breaking up of Cooper

pairs. Generically we �nd a bimodal spectrum containing both the delta-function and

the broad continuum, though for some parameter ranges the delta-function lies in the

continuum and becomes signi�cantly broadened, disappearing as a → .�ese results

mirror those in Chin and Julienne’s study of the RF spectrum of a single molecule [].

Interpreting the delta function peak as a “bound-bound" transition, we encounter �nal

state pairs in parameter ranges where no free-space molecules exist.

We construct a “phase diagram” (�gure .) in the �nal interaction (akF) versus

initial interaction (akF) plane, delineating the regions where we expect to see a bound-

bound transition and where we do not. We also plot the interaction values used in three

experiments [, , ]. �e experimental observations are consistent with our pre-

dictions; in [] no bound-bound transition is seen, while in [] one is always seen.

We only consider the spectrum of the homogeneous gas (measurable tomograph-

ically []), and avoid discussing the trap averaged spectrum, where inhomogeneous

broadening obscures the basic physics []. Further, we restrict ourselves to the T = 

unpolarized case (n = n).

�e role of the hyper�ne energies є j (j=,,), is most transparent if we make the

Canonical transformation to the �eld operators ψ j,k → e−iє j tψ j,k, to arrive at a Hamilto-

nianH = H +HRF with H = H +H +H +H +H,

H j = ∑kєkψ†j,kψ j,k (.)

Hi j = −λi j∑kpqψ†i,kψ†j,pψ j,p−qψi,k+q (.)

HRF = ∑k (ψ†
,kψ,ke−iωt + ψ†

,kψ,ke iωt) (.)

= e−iωtX + e iωtX†,
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Figure .: Phase diagram showing for which values of initial (a) and �nal (a) scat-
tering lengths the homogeneous RF spectrum contains a bound-bound peak. Scattering
lengths are normalized via the fermi wavevector, kF = (πn)/, where n is the atomic
density. Symbols: parameters from lowest temperature data in the experiments – refer-
ences [], [] and [] correspond to open diamonds, closed circles, and open circles
respectively.

We neglect the H term3. �e RF detuning is ω = ωRF − (є − є) and the free particle

dispersion is єk = k/m − µ, where m is the atomic mass, and we use units where ħ = .

�e interaction parameters λi j relate to the scattering lengths ai j between states ∣i⟩ and

∣ j⟩ by


λi j
= −

mV
πai j

+∑k
m
k

(.)

where V is the spatial volume. Of particular importance is that if λ = λ, then [X, H] =

, implying that the RF spectrum will consist of a single unshi�ed delta-function.

We make the variational ansatz that the system is initially in the BCS state

∣GS⟩ =∏k (uk + vkψ†
,kψ†

,−k) ∣vac⟩ . (.)

Minimizing ⟨H−µN⟩, andneglecting theHartree terms [] yields a ground state energy

3By the Pauli exclusion principle, the ∣⟩ atoms are spatially anticorrelated. To lowest order, the RF
excitation will create ∣⟩ atoms which share these correlations, rendering negligible the impact of H.





Figure .: �eoretical radio frequency spectra at a → ∞, where kF = (πn)/ and
єF = kf /m.�e discrete peak on the right two �gures correspond to a “bound-bound"
transition between Cooper pairs in the various channels. Moving to the le�, that peak
mergeswith the continuum.�e discrete peak has been scaled down for display; its actual
spectral weight is shown in �gure ..

EGS = ⟨H⟩ = ∑k(єk −Ek)+∆/λ, with vk = (Ek − єk)/Ek, and uk = (Ek + єk)/Ek.�e

gap ∆ obeys λ∑k /Ek =  and the number of particles is N = ∑k ∣vk ∣.�e excitations

will be described by quasiparticle operators γk = ukψ,k−vkψ†
,−k and ηk = vkψ†

,k+ukψ,−k

with energies Ek =
√

(єk − µ) + ∆.

. Spectral density

Fermi’s Golden rule states that given an RF detuning ω, the rate of transitions I to a set

of �nal states ∣ f ⟩ is given by the imaginary part of a spin response function,

I(ω) ∝ ∑
f
∣⟨GS∣HRF ∣ f ⟩∣

 δ(ω + EGS − E f ) (.)

= Im ⟨GS∣X†


ω − H̄
X ∣GS⟩ = ImR(ω),

where H̄ = H − EGS. We approximate this response by restricting the �nal states to those

containing a single quasiparticle. By de�nition this captures the “coherent" part of the

response where most of the spectral weight lies [], and aside from the BCS ansatz is

exact when a = a or when a = . Introducing the incomplete but orthornormal set





of states

∣k⟩ =

vk

ψ†
,kψ,k ∣GS⟩ = −ψ†

,kγ†−k ∣GS⟩ , (.)

we replace the H̄ in (.) by H̃ = ∑k,k′ ∣k⟩ H̄kk′ ⟨k′∣, where H̄kk′ = ⟨k∣ H̄ ∣k′⟩ = δkk′ (Ek + єk)−

λukuk′ . Matrix inversion gives

R(ω)

V
=

V∑k,k′vkvk′ [(ω − H̃)−]kk′ (.)

=
(mµ)/

(π)µ

⎡
⎢
⎢
⎢
⎢
⎣

G +

π

∆̄G


a
√
mµ +


π
G

⎤
⎥
⎥
⎥
⎥
⎦

.

In terms of scaled variables ω̄ = ω/µ, ∆̄ = ∆/µ and Ex =
√

(x − ) + ∆̄,

G = ∫
∞


dx [− −

x(Ex + x − )
Ex(ω̄ − Ex − x + )

] ,

G = ∫
∞



xdx
Ex(ω̄ − x − Ex + )

,

G = ∫
∞


xdx

Ex − x + 
Ex(ω̄ − Ex − x + )

. (.)

As previously discussed, there are two contributions to the spectrum: a continuum

from breaking up Cooper pairs, and a discrete peak from the conversion of a Cooper pair

into a pair in the new channel. Mathematically, the continuum comes from the poles of

the integrands of the G’s. Since we have severely restricted the available �nal states and

neglected Hartree terms, the location of this continuum is independent of the �nal-state

interactions and corresponds to all ω for which we can �nd a k with ω = Ek + єk: ie.

ω >
√
∆ + µ − µ. In a more sophisticated theory the threshold will depend on a.�e

discrete peak comes from the condition


a

√
mµ

+

π
G = . (.)

�is condition can only be satis�ed for su�ciently strong interactions. In particular, if

a = ∞, we �nd that this peak exists if a >  or if a
√
mµ ≲ −. In the former case

the excited state can be thought of as a molecular pair, but in the latter case it is more





analogous to a Cooper pair. When a = a, one can recognize that if one sets ω =  in

Eq. (.) one recovers the gap equation. In this limit all spectral weight resides in this

zero-detuning peak.

In the BCS-BEC crossover, the chemical potential depends on interactions and den-

sity in a nontrivial way. Following convention we will quote our results in terms of the

Fermi momentum of an ideal Fermi gas with the same density as the one we are consid-

ering, kF = (πn)/. In �gures . and . (top) we illustrate the a dependence of the

spectrum by showing the spectral density when a =∞. As �gures ., . and . reveal,

the pair-pair transition peak breaks o� from the continuum around akF = −.. As the

solid line in �gure . shows, most of the spectral weight is in that peak close to unitarity.

For  < akF ≪  (beyond the right hand edge of �gures . (top) and .) the spectral

weight shi�s back to the continuum. In that regime, the wavefunction overlap between

the large ∣⟩-∣⟩Cooper pairs and the small ∣⟩-∣⟩molecules becomes negligible. Further,

the spectral weight in the bound-bound peak goes to zerowhen it hits the continuum (le�

edge of the curves in �gure .), in agreement with []. Figure . (bottom) is simi-

lar to �gure . (top), except that we show the a dependence of the spectrum keeping

a =∞.

We now discuss how the structure seen in �gures . and . can be measured exper-

imentally. First, since all physics only depends on the dimensionless parameters ai jkF all

interactions can be modi�ed by changing the density. If a =∞ then only the �nal state

interaction is changed when the density is varied.�is is a powerful knob: as seen in �g-

ure ., two of the experiments [, ] have been performed very close to the point in

Fig. . (top) where a bound-bound transition emerges from the continuum. A modest

increase in density should allow the observation of this feature. Alternatively, one can

produce di�erent �nal state interactions by changing which internal states one uses in
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Figure .: [Top] Spectral density as a function of �nal state scattering length a and
RF frequency ω, when initial state interactions satisfy a =∞. [Bottom] Same plot, ex-
cept as a function of initial state scattering length a and ω with a =∞. Spectral weight
increases fromwhite to black.�e δ-function peak has been broadened to improve read-
ability.

the experiment []. For Lithium 2 in states ∣⟩, ∣⟩ and ∣⟩, one has six combinations:

instead of a ∣⟩∣⟩ super�uid, for example, one could take a ∣⟩∣⟩ super�uid and excite ∣⟩

to ∣⟩. For the six possible combinations of pairing and excitation, �nal state interactions

(/a�nalkF) for typical central densities [] are tabulated in table ..





Figure .: Fraction of spectral weight in the bound-bound peak as a function of �nal
state interaction strength a, for di�erent values of a. When the two interactions are
equal, i.e., a = a, all the weight is in this peak.

Table .: Final state interactions for di�erent initial pairs and excitations at typical ex-
perimental densities []. For all cases, /ainitialkF = , i.e., the initial pair is at unitarity.

Initial pair RF excitation /a�nalkF
 → -.
 → -.
 → .
 → .
 → -.
 → .

. Quantitative accuracy

Motivated by refs. [–], we compute the zeroth and �rst moments of the resolvent

Rexact, de�ned in eq (.), and our approximation, Rapprox, from eq (.) . �e ∣k⟩ basis

is su�ciently large that the zeroth moment, or total spectral weight, is preserved by our
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Figure .: Solid line: separation between the “bound-bound” peak and the continuum
from our theory, in units of the Fermi energy. Stars: Experimental data from []. �is
is a zero parameter �t, with density and magnetic �eld as the only inputs.

approximation,

∫
∞

−∞

dω
π

IRexact(ω) = ⟨GS∣X†X ∣GS⟩ =∑
k
vk

∫
∞

−∞

dω
π

IRapprox(ω) =∑
k
∣⟨k∣X ∣GS⟩∣ =∑

k
vk

(.)

�e higher moments of both Rexact and Rapprox are dominated by long tails which arise

from the short distance structure of the BCSpairs. In the absence of �nal state interaction,

for example, Rapprox(ω) ∝ ω−/ for large ω. With �nal state interaction, Rapprox(ω) ∝

ω−/ and our approach reproduces the �rst spectral moment in [].

Finally we comment on the quantitative accuracy of our approach. �e largest ap-

proximation that we make is the neglect of Hartree-type interactions. �ese terms will





shi� the spectral lines. We also neglected incoherent processes which will broaden the

spectra. Another important approximation was our neglect of �nite temperature e�ects.

�ese could be important in experiments where T/TF ∼ .. Despite the severity of these

approximations, we believe that our calculation is valuable for its simplicity. It illustrates

the important physics in a transparent manner.

Quantitatively comparing our theory to experiments such as [] is di�cult because

those experiments usually trap-average perpendicular to the long axis to improve their

signal to noise ratio. However, in the regime where a bound-bound transition exists (up-

per half of �gure .) with a signi�cant weight, even a trap averaged spectrum should

show a peak and a continuum, with the peak heavily weighted by regions of high density

at the center. We compare the separation between the peak and the continuum from our

theory with data from [] in �gure ..�e agreement is quite good.





APPENDIX A

EVALUATION OF THE PHENOMENOLOGICAL FREE ENERGY

Here we detail how one calculates the Free energy of our pheonomological model for

a general domain wall shape. We parameterize the boundary by f = F(θ), in terms of

which the coordinates of the boundary are ρ(θ, f ) = RTF f cos θ and z(θ, f ) = ZTF f sin θ.

�e surface energy is

EDW = Adw ∫ ( −
ρ

R
TF

−
z

Z
TF

)



dr

= Adw ∫
π/


dθF(θ) cos θ

× [F′(θ) cos θ − F(θ) sin θ] × [ − F(θ)]

×

¿
Á
ÁÀ+(

ZTF
RTF

)



(
F′(θ) sin θ + F(θ) cos θ
F′(θ) cos θ − F(θ) sin θ

)



(A.)

where we de�ne the coe�cient

Adw = ħωzRTFZTF [
m
ħ

]
/ ⎡⎢

⎢
⎢
⎢
⎣

ηπµ/
( + β)(π)/

⎤
⎥
⎥
⎥
⎥
⎦

. (A.)

We write the free energy of the super�uid core as

ΩS = As ∫s ρdρdz ( −
ρ

R
TF

−
z

Z
TF

)

/

= As ∫
π/


dθ cos θ ∫

F(θ)


d f f ( − f )/

= As ∫
π/


dθG[F(θ)] cos θ (A.)

As = −ζsRTFZTF [
m
ħ

]
/ ⎡⎢

⎢
⎢
⎢
⎣

µ/
π

⎤
⎥
⎥
⎥
⎥
⎦

(A.)

G(x) =



[x
√
 − x (− + x − x + x)

+ sin−(x)] (A.)





Similarly, the free energy of the fully polarized normal shell, ΩN = An ∫n ρdρdz( + γ −

ρ/R
TF
− z/Z

TF
)/, is:

ΩN = An( + γ)[
π


− ∫
π/


dθG[

F(θ)
√
 + γ

] cos θ]

An = −ζnRTFZTF [
m
ħ

]
/ ⎡⎢

⎢
⎢
⎢
⎣

µ/
π

⎤
⎥
⎥
⎥
⎥
⎦

. (A.)

�e total number of atoms in the two phases are given by

Ns = Bs ∫
π/


dθ cos θG[F(θ)]

Nn = Bn( + γ) [π/ − ∫
π/


dθ cos θG [

F(θ)
√
 + γ

]]

(A.)

where

Bs,n = ζs,n

π

[
mµ
ħ

]
/
RTFZTF

G(x) =



[x
√
 − x(− + x − x) +  sin−(x)] .

(A.)

�us both the free energy, and the constraints of �xed N and P reduce to one dimensional

integrals.





APPENDIX B

BCS THEORY

�e BCS theory has been extremely successful at describing conventional superconduc-

tors, and is also an accurate description of cold gases on the a <  side (therefore called

the BCS side) of a Feshbach resonance, getting better farther from the resonance. Here

we summarize the BCS theory for spin-polarized fermions.�e BCS Hamiltonian is

H =∑
k,σ

єkσψ†kσ
ψkσ −∑

k
∆kψ†k↑ψ

†
−k,↓ −∑

k
∆∗kψ−k↓ψk↑

∆k =∑
k′
Ukk′ ⟨ψ−k′↓ψk′↑⟩

(B.)

where єkσ includes Hartree-Fock corrections to the free energy. In general, µ↑ ≠ µ↓ since

their populations are di�erent. �is quadratic Hamiltonian can be diagonalized by the

linear (Bogoliubov) transformation

ψk↑ = u∗kγ,k + vkγ†
,k ψk↓ = −v−kγ†

,−k + u∗−kγ−k,

where the coe�cients follow ∣uk∣

+ ∣vk∣


=  to satisfy fermionic commutation relations.

Hence we can write express the coe�cients as uk = cos θk and vk = sin θk. �e angles

θk are determined by the condition that this transformation diagonalizes H , which for

s-wave superconductors (∆k = ∆) gives

tan θk =
∆

єk↑ + єk↓

�e diagonalized Hamiltonian reads

H =∑
k

λ,kγ†
,kγ,k +∑

k
λ,kγ†

,kγ,k +∑
k

[є̄k −
√

є̄k + ∆] +
∆

U

λ[,],k =
√

є̄k + ∆

k ±
∆єk


(B.)

where we’ve assumed Ukk′ = U and de�ned є̄k = єk↑ + єk↓, ∆єk = єk↑ − єk↓ = µ↓ − µ↑.

Densities (nσ = ∑k ⟨ψ†kσ
ψkσ⟩) and other quantities can be calculated at �nite temperature





using

⟨γ†i,kγi,k⟩ =


eβλ i ,k + 

We quote the relevant expressions here for reference:

n↑ =

π

[
m
ħβ

]

/

∫
∞



ydy


eβh/ + cosh Ey − (y − βµ̄) sinh Ey/Ey

cosh Ey + cosh(βh/)
(B.)

n↓ =

π

[
m
ħβ

]

/

∫
∞



ydy


e−βh/ + cosh Ey − (y − βµ̄) sinh Ey/Ey

cosh Ey + cosh(βh/)
(B.)


a
= −

π
[
m
ħβ

]

/

∫
∞


ydy [


Ey

sinh Ey

cosh Ey + cosh(βh/)
−

y

] (B.)

⟨H⟩

Vol
=

πβ

[
m
βħ

]

/ ⎡
⎢
⎢
⎢
⎢
⎣
∫
∞


ydy {

Ey (e−Ey + cosh(βh/)) − (βh/) sinh(βh/)
cosh Ey + cosh(βh/)

+ y − βµ̄ − Ey +
(β∆)

y
} +

π
a

(β∆)
√

βħ

m

⎤
⎥
⎥
⎥
⎥
⎦

(B.)

where µ̄ = µ↑ + µ↓ and Ey =
√

(y − βµ̄) + (β∆). Equation (B.) is called the gap equa-

tion, since solving that at �xed temperature /β and scattering length a gives the gap ∆.

On the other hand, solving equation (B.) with ∆ =  gives the transition temperature

/βc as a function of a. To characterize the phase transition from ∆ =  to ∆ ≠ , we need

to construct the free energy as a function of ∆.

F = −

β
logTr e−βH (B.)

Since H is quadratic in the Bogoliubons, this can be calculated analytically. A�er the

smoke clears, we’re le� with

F
Vol

=

πβ

[
m
ħβ

]

/ ⎡
⎢
⎢
⎢
⎢
⎣
∫
∞


dy [



(β∆) + y(y − βµ̄)

−y log{ cosh Ey +  cosh
βh


}] +
π
a

(β∆)
√

βħ

m

⎤
⎥
⎥
⎥
⎥
⎦

(B.)





At low temperatures (�gure B. le�), this F has two minima in ∆, one of them ∆ = ,

and the transition between them is discontinuous. Above a temperature speci�ed by

[F ′′(∆ = )/∆]∆= = , the transition is continuous from ∆ =  to ∆ ≠  (�gure B.

right). At T = , h =  and a → ∞, the gap can only depend on the density, and in

0 1 2 3 4 5 6
β∆

0

F
(∆

)−
F

(0
)

h<hc
h=hc
h>hc

0.0 0.2 0.4 0.6 0.8 1.0
β∆

0
F

(∆
)−
F

(0
)

h<hc
h=hc
h>hc

Figure B.: F from (B.) at unitarity. Le�: At low temperature, F(∆) − F() has two
minima. As the chemical potential mismatch h crosses a threshold hc, the order parame-
ter ∆ jumps discontinuously from a �nite value to zero. Right: At high temperature above
the tricritical point, the phase transition is continuous at hc.

fact ∆ = .µ̄. �e chemical potential mismatch hc a�er which there’s a discontinuous

transition from the superconducting to the normal state (∆ = ) is called the Clogston

limit, and at T = , a →∞, hc = .µ̄.





APPENDIX C

THE HUBBARD-STRATONOVICH TRANSFORMATION

�e Hubbard-Stratonovich transformation is used to eliminate a pair of fermionic �elds

in favor of a single bosonic �eld.�e usual point-interaction Hamiltonian

H =∑
kσ

єkσψ†kσ
ψkσ − V∑

kk′q
ψ†q

+k′↑ψ

†
q

−k′↓ψ q


−k↓ψ q


+k↑

provides an ideal test case.�e partition function for this Hamiltonian can be written as

S = ∫
β


dτ∑

kσ

ψ†kσ
∂τψkσ − ∫

β


dτH

Z = ∫ {∏
kσ

dψkσ dψ∗
kσ} eS

(C.)

Using the identity
π
α ∫ dz dz∗ e−α∣z∣ =  (C.)

we write unity in terms of an arbitrary scalar function ∆k:

[∏
k

αk

π
] ∫ {∏

k
d∆k d∆∗k} e−∑k αk ∣∆k ∣ =  (C.)

Since the integral over ∆k spans the entire scalar space, this result holds even if we shi�

∆k by any arbitrary amount, in particular:

∆k →∆k − V∑
q

ψ k

−q↓ψ k


+q↑

∴ ∣∆q∣

→ ∣∆q∣


− V∆∗q∑

k′
ψ q

−k′↓ψ q


+k′↑ − V∆q∑

k
ψ∗

q

+k↑ψ

∗
q

−k↓

+ V∑
kk′

ψ∗
q

+k↑ψ

∗
q

−k↓ψ q


−k′↓ψ q


+k′↑

(C.)





If we multiply the partition function by unity as de�ned in (C.) with the shi� de�ned

in (C.), we get

Z = ∫ {∏
kσ

dψkσ dψ∗
kσ}{∏

p
d∆p d∆∗p} eS

S = ∫
β


dτ∑

kσ

ψ∗
kσ (∂τ − єkσ)ψkσ + V ∫

β


dτ∑

qkk′
ψ∗

q

+k↑ψ

∗
q

−k↓ψ q


−k′↓ψ q


+k′↑

− ∫
β


dτ∑

p
αp ∣∆p∣


+ V∑

p
∫

β


dταp∆∗p∑

k′
ψ p

−k′↓ψ p


+k′↑

+ V∑
p
∫

β


dταp∆p∑

k
ψ∗

p

+k↑ψ

∗
p

−k↓

− V∑
p

αp ∫
β


dτ∑

kk′
ψ∗

p

+k↑ψ

∗
p

−k↓ψ p


−k′↓ψ p


+k′↑

(C.)

�is is true for any αk, and in particular for αp = /V.�is choice gets rid of the interac-

tion term, leaving us with

S = ∫
∞


dτσkσψ∗

kσ (∂τ − єkσ)ψkσ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

−

V ∫

β


dτ∑

q
∣∆q∣



+ ∫
β


dτ∑

q
∆∗q∑

k
ψ q

−k↓ψ q


+k↑

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

+ ∫
β


dτ∑

q
∆q∑

k
ψ∗

q

+k↑ψ

∗
q

−k↓

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

(C.)

So the partition function becomes

Z ∝ ∫ {∏
p
d∆p d∆∗p} e−


V ∫ β


dτ∑p ∣∆p ∣ × ∫ {∏

kσ

dψkσdψ∗
kσ} eS eS

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⟨eS ⟩

(C.)

where the expectation is evaluated with the “free fermion” Hamiltonian. Now

⟨eS⟩ =  + ⟨S⟩ +


⟨S ⟩ +



⟨S ⟩ +⋯ (C.)

and sincewe’re averagingwith respect toS only terms of the form ⟨AB⟩, ⟨AB⟩, ⟨AB⟩

etc. will be non-zero.

⟨eS⟩ =  + ⟨AB⟩ +


⟨AB⟩⟩ +⋯ +


(n!)

⟨AnBn⟩ +⋯ (C.)





If we’re close to the tricritical point, ∆ is small, and we can consider terms up to order ∆,

or in other words, only the term ⟨AB⟩.

⟨AB⟩ = ∫
β


dτ ∫

β


dτ′∑

q
∆∗q∑

q′
∆q′∑

kk′
⟨ψ q


−k↓(τ)ψ q


+k↑(τ)ψ∗

q′

+k′↑

(τ′)ψ∗
q′

−k′↓

(τ′)⟩

(C.)

We can now use Wick’s theorem to break up the expectation value into pairs, and the

multiple sum above simpli�es to

⟨AB⟩ = β∑
q

∣∆q∣

∑
k

 − f (є q

+k↑) − f (є q


−k↓)

є q

+k↑ + є q


−k↓

(C.)

�is sum by itself is divergent, but the �rst exponential in (C.) subtracts o� the divergent

part. At unitarity

−
∣∆p∣



V
= − ∣∆p∣


∑
k


єk

(C.)

So the combination

χ(q) =∑
k

⎧⎪⎪
⎨
⎪⎪⎩

 − f (є q

+k↑) − f (є q


−k↓)

є q

+k↑ + є q


−k↓

−

єk

⎫⎪⎪
⎬
⎪⎪⎭

(C.)

is convergent, and appears in the partition function as

Z ∝ ∫ {∏
p
d∆p d∆∗p} eβ∑q χ(q)∣∆q ∣ (C.)

χ(q) is given by the integral

χ(q) =
Vol
π

(
m
β

)

/ β
 ∫

∞


dk

kL(k, q) − k − 

q + βµ

k − βµ + 

q

L(k, q) =

q
log

e−kq + ek+q/ (e−βµ↑ + e−βµ↓) + ek+q/+kqe−βµ

ekq + ek+q/ (e−βµ↑ + e−βµ↓) + ek+q/−kqe−βµ

(C.)

E�ectively, we’ve written down the partition function in terms of a Bosonic �eld ∆.





APPENDIX D

COOLING AND TRAPPING OF ATOMS

�e “granddaddy” of all cooling techniques in this �eld is laser cooling[, ], in which

o�-resonant (red-shi�ed) laser beams are used to slow down atoms by decreasing their

average velocity, or putting them in “optical molasses” as is more fancifully known.�en

the cooled gas is placed in a magneto-optical trap (MOT), where they are evaporatively

cooled to nanoKelvin temperatures. In the eleven years since the �rst BEC, newer and

better variations have been perfected over this archetypal technique, including some all-

optical techniques, which obviate the need for bulky magnets. Below we outline the idea

of laser cooling and evaporative cooling. It should be noted, however, that very o�en there

is another cooling step between the two, such as Raman cooling or Sisyphus cooling, for

which the reader is refered to the literature [–].

D. Laser cooling

Suppose an atom has a transition from the ground state to an excited state at an energy

∆ = E − E. If a photon at at frequency ν = ∆/h hits this this atom (and if the photon is

of the “right kind”, i.e., has the right polarization and so on – more about that later), then

it can excite the atom from the ground state to the excited state. However, there will also

be a momentum transfer, in that the momentum of the photon hν/c will be transferred

to the atom. So an atom at rest will receive a “kick” when it absorbs a photon, and will

speed up. If, however, we can tune things so that only atoms inmotion receive this “kick”,

and further, they receive this “kick” only in a direction opposite their current velocity,

then they will slow down a�er repeated kicks.�e way to ensure this velocity selectivity

is by ensuring that the photon has an energy less than ∆.�e absorption spectrum of an





FigureD.: Schematic representation (color on-
line) of red-detuned laser and Doppler-shi�ed
absorption spectrum. �e solid curve corre-
sponds to the absorption spectrum of an atom at
rest, the dashed blue curve is for an atommoving
towards the laser source, while the dotted blue
curve is for an atom moving away from the laser
source.

ν

ν

ν

ν

ν

ν

Figure D.: Laser cooling by six
lasers along the three axes. �e
solid arrows are lasers, all identi-
cally red detuned, and the blob in
the center is the gas being cooled.

atom, even at zero temperature, has a �nite width limited by the lifetime of the excited

state. In �gure (D.), the absorption spectrum is represented by a solid blue curve with

a peak at ν, the resonant frequency. Let an external laser be tuned to some frequency

ν < ν (the vertical red line). Now if the atom is moving towards the laser source with a

velocity v, then according to the atom the frequency of the laser is blue shi�ed to

ν′ = ν

¿
Á
ÁÀ + (v/c)
 − (v/c)

≈ ν ( +
v
c
) (D.)

Or, equivalently, from the point of view of the laser, the absorption spectrum of the atom

is red shi�ed so that the absorption peak is now at ν′ = ν( − v/c). If, however, the

velocity is “just right” so that the red-shi�ed peak is exactly on top of ν (the dashed blue

curve in �gure (D.)), i.e.,

v =
c
ν

(ν − ν) (D.)





then the atom will absorb photons from the laser with a high probability. Conserving

both energy and momentum in such an (inelastic) process where a photon is completely

absorbed by an atom to go into the excited state E, we see that the new velocity of the

atom is

v′ = v −
∆
mc

(D.)

where m is the mass of the atom1. Atoms that are moving away from the laser, however

(dotted curve in �gure (D.)), will be blue-shi�ed w.r.t. the laser, and hence will not

absorb photons and will not receive any kicks. So we have found a way of slowing down

only atoms moving with a certain velocity. If we now use identically red-shi�ed lasers

(which can be achieved by splitting a single laser) from all six directions in xyz space

(�gure (D.)), then we will slow down all atoms that have a velocity component v in any

of the three directions.

When the atom re-emits and comes down to the ground state, it will emit in a random

direction, so the average kick received frommultiple re-emissions is going to be zero.�is

arrangement is going to slow down all atoms with a speci�c velocity component v, which

depends upon the degree of detuning as mentioned above. So now we gradually sweep

the laser frequency closer to ν to target lower and lower velocities.�is brings down the

average velocity of all the atoms, e�ectively cooling them.

D.. Magneto-optic trapping

Cooling is not trapping. Although the above procedure will slow atoms down, there is

nothing to prevent them from slowly dri�ing out of the focal point of the six lasers.�is

is prevented by a magneto-optical trap (MOT). It turns out, to trap atoms in a MOT, we

1�e atoms are assumed to be slow so that the momentum is non-relativistic (p = mv).
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Figure D.: Schematic of a MOT in -D.

need an atom with not one but three excited states, which are degenerate in the absence

of an external magnetic �eld. Suppose the total angular momentum of an atom is F =

 in the ground state and F =  in the �rst excited state. We place the gas in an anti-

Helmholtz magnetic �eld geometry2, such that the �eld is lowest at the center of the trap

and highest at the edges, having opposite signs at the opposite edges, as in �gure (D.).

�is ensures that the ∣, ⟩ state has the highest energy on one side, while the ∣,−⟩ state

has the highest energy on the other side. �e states ∣, ⟩ and ∣, ⟩ do not experience

any Zeeman shi�. Now we shine two red-detuned lasers of the same frequency (ν in

�gure (D.)) but opposite circular polarizations (σ+ and σ−) from the two sides, such

that σ+ shines from the end where ∣, ⟩ has the lower energy. �e key point is that σ+

only couples ∣, ⟩ with ∣, ⟩, while σ− only couples ∣, ⟩ with ∣,−⟩. At the center of

the trap, ν is slightly lower than ∆ and consequently there is the usual laser cooling as

detailed above. Now if an atom strays to the right in �gure (D.), then its ∣, ⟩ → ∣,−⟩

absorption gets closer to ν and its ∣, ⟩→ ∣, ⟩ transitionmoves away from ν. In terms of

photon absorption, it “sees” the σ− beam better than the σ+ beam, absorbs more photons

from the right3, and experiences a net force to the le�. It is also obvious that this net force

increases as the atommoves further rightward4. An analogous e�ect takes place at the le�

2�is is done by simply reversing the current in one of the two Helmholtz coils
3In short, the role of the atom velocity used in laser cooling above is played by the magnetic �eld.
4Close to the center, this restoring force is harmonic, not surprisingly.





extremity, pushing all le�-straying atoms to the right. So this setup not only cools the

atoms down, it also traps them by creating a net restoring force towards the center.�is

basic setup is replicated along all three axes to create a D trap to contain cooled gases.

D.. Temperature limits

�e lowest temperature(s) possiblewith themethodoutlined above comes from two facts.

• �is technique obviously depends on the fact that static atoms do not absorb the

photons, while atoms moving with a certain velocity do. �is will no longer be

the case if the Doppler shi� is as small as the absorption line-width; at (and be-

low) that detuning, the absorption spectrum ceases to be velocity dependent.�is

lower limit on the detuning sets a limit on the lowest velocities we can target. If the

absorption line-width is hγ, then Doppler limit of temperature is

kBTDoppler =


hγ (D.)

�is is of the order of  microKelvins. �e �rst few laser cooling experiments

seemed to agree with this estimate of the lower bound on temperature[, ].

Interestingly, subsequent laser cooling experiments turned out to produce much

lower (sub-Doppler) temperatures quite by happy chance[, ]. �is surpris-

ing result was explained later as a result of a Sisyphus-like cooling process in the

standing-wave �eld of two counterpropagating lasers[]. �is lowered the tem-

perature by a factor of �ve to ten from Eq (D.), until it hit the next limit (below).

• Although the re-emission kick is in a random direction, ensuring that the time-

averaged momentum kick due to re-emission is zero, the time-averaged kinetic

energy of the atom due to re-emission kicks is non-zero. �is sets a limit on the





lowest temperature achievable by

kBTR =
∆

mc
(D.)

�is is of the order of  microKelvins, and is called the single photon recoil limit.

�is is still too high to produce BCS-s, and this limit was broken by techniques

such as Raman cooling[, ] which produced temperatures lower by a factor

of ten to hundred.

As we have noted, the simple laser cooling and magneto-optical trapping summarized

above is not enough to produce nanoKelvin temperatures. �is is usually followed by

one or more stages [–], until, to produce a BEC, the atoms need to be evaporatively

cooled.

D. Evaporative cooling

Using a combination of optical techniques, the temperature can be brought down to sev-

eral µK, sometimes even several nK[]. However, what matters in creating BEC-s is not

the temperature alone, but the phase space density5. Although [] obtained a tempera-

ture of ∼. nK, they only got nλdB ∼ −. Even a more improved technique[] which

achieved a much higher phase space density with Raman-cooled Cesium only managed

nλdB ∼ /. To get a BEC, atoms are cooled in much the same way as a cup of co�ee.

In a cup of co�ee, the most energetic molecules with a lot of kinetic energy escape

from the surface into the gaseous form. Since their kinetic energy is more than the mean

kinetic energy, their escape brings the average kinetic energy down, which brings down

5�e condition for forming a BEC is nλdB = ., where n is the density, and λdB is the thermal de
Broglie wavelength, given by λdB = ħ/

√
mkBT. So we need low temperatures and high densities to form

a BEC[].





the temperature (our co�ee obviously gets cold!). In cold gases, much the same principle

applies. During optical cooling, the atoms are trapped inside a magneto-optic trap. Now

since we need to go far below the recoil limit, a MOT is not the best trap any more. So

the pre-cooled atoms are trapped inside some kind of conservative trap, for example a

purely static magnetic �eld or a far-o�-resonant optical �eld[]. Higher-energy atoms

are expelled by mainly four di�erent evaporation techniques[].

|1,−1〉

|1, 1〉

|1, 0〉

ω

ω

r

E

Figure D.: Energy levels of ∣F,mF⟩ states in a quadratic magnetic trap; r is the distance
from the trap center and E is the energy.

. Direct contact with walls: Some experimentalists keep a sticky wall close to the

sample, and then lower the temperature of the wall gradually.�e wall absorbs the

high energy tail of the distribution.

. Lowering the trappingpotential:�e total trapping potential can be suddenly low-

ered, so that bound states of the deeper potential now become continuum states of

the shallower potential.�e problem with this is that the elastic collisions rates are

small throughout the ramping and cannot be increased, so the cooling is very slow.

. Lowering trapping potential along one axis: In this method, in a D trap, only

the axial trapping potential is lowered, so this is basically a D selection method.

�e advantage is that the trapping volume and hence the collision rate can still be





controlled through the radial potential, so this cooling can be a lot faster than the

previous one.

. RF-induced evaporation:�is is currently themost popular and e�ective method.

Let an atom with F =  be trapped as shown in �gure (D.); the magnetic �eld is a

minimum at the center, and ∣, ⟩ is a low-�eld-seeking state which is trapped.�e

atoms with higher kinetic energy will reside closer to the edges, and hence our goal

is to eliminate the atoms close to the edges. We apply an RF �eld at frequency ω,

which is resonant with the ∣,−⟩↔∣, ⟩ and ∣, ⟩↔∣, ⟩ transitions near the edge.

�en only the atoms in ∣, ⟩ near the edge will undergo stimulated emission to end

up �rst in ∣, ⟩ and �nally in ∣,−⟩. Now ∣,−⟩ is a high-�eld-seeking state, and

so will “roll down” the potential and exit the trap. �is will eliminate the higher

energy atoms and bring the temperature down. Sometimes instead of an RF �eld,

a laser is tuned to some optical transition and selectively applied to the edges of the

cloud, to eliminate atoms by optical pumping.

�is last stage of evaporative cooling can give six orders of magnitude increment in nλdB,

resulting in Bose-Einstein condensation. To summarize, Doppler cooling produces a

temperature of ∼  µK; intermediate techniques bring it down to ∼  µK (or some-

times even ∼ nK[]); and evaporative cooling, with possible temperatures as low as 

pK[], brings the phase space density up to form BEC-s.

�e techniques of Doppler and evaporative cooling, while general, do not necessarily

always work. For example, the energy level structure of the target molecule might be too

complicated for Doppler cooling, in which case techniques such as [, ] need to be

used. More importantly, evaporative cooling will not work for atoms with unfavorable

collisional properties. A direct evaporative cooling relies on the rapid thermalization

of a cloud, which, at low temperatures, depends on the s-wave scattering between the





atoms. For degenerate Fermions, the s-wave scattering length is zero between identical

species due to Pauli exclusion principle, and the p-wave scattering goes to zero at low

temperatures. So they can not thermalize, and cannot be cooled by direct evaporative

cooling.�is can be a problem even for certain Bosonic species; e.g., the s-wave scattering

length of Rb vanishes for scattering energies of E ≃  µK[].

In such unfavorable cases, the target is sympathetically cooled.�e idea behind cool-

ing a di�cult-to-cool species is to �nd a second species that has good collisional proper-

ties with the �rst species, i.e., which has a much higher rate of elastic collisions than in-

elastic collisions.�en we cool the second species down, and let the �rst species thermal-

ize with the second species, thereby bringing down the temperature [, , , , ].

�e importance of this technique cannot be overemphasized, since every single experi-

ment with degenerate fermi gases utilizes sympathetic cooling.





APPENDIX E

PARTIAL DERIVATIVES AT CONSTANT PRESSURE

E. A general “chain rule”

Suppose we have two functions f (x , y) and z(x , y), and we want to evaluate ∂ f /∂x∣z

instead of ∂ f /∂x∣y. In general,

δ f =
∂ f
∂x

∣
y

δx +
∂ f
∂y

∣
x

δy

If we add the constraint z(x , y) = constant, then

δz =
∂z
∂x

∣
y

δx +
∂z
∂y

∣
x

δy = 

⇒ δy = −δx
∂z
∂x

∣
y

∂y
∂z

∣
x

Using this δy in the expression for δ f ,

∂ f
∂x

∣
z
=
∂ f
∂x

∣
y
−
∂ f
∂y

∣
x

∂z
∂x

∣
y

∂y
∂z

∣
x

=
∂ f
∂x

∣
y
+
∂ f
∂y

∣
x

∂y
∂x

∣
z

(E.)

E. Latent heat

We need to evaluate ∂S/∂N f ∣P,T,Nb
.

∂S
∂N f

∣
P,T,Nb

=
∂S
∂N f

∣
V,T,Nb

+
∂S
∂V

∣
T,N f ,Nb

∂V
∂N f

∣
P,T,Nb

=
∂s
∂n f

∣
V,T,Nb

+
∂P
∂T

∣
V,N f ,Nb

∂V
∂N f

∣
P,T,Nb

(E.)

where s = S/V, and we’ve related ∂S/∂V to ∂P/∂T using a Maxwell’s relation. Since it’s

easier for us to express the densities in terms of the chemical potentials (rather than the





other way round), we can write

s = s(T, µ f , µb , n f (T, µ f , µb), nb(T, µ f , µb))

Noting that constant V and Nb implies constant nb, we have

δnb∣T =
∂nb

∂µ f
∣
µb ,T

δµ f +
∂nb

∂µb
∣
µ f ,T

δµb = 

⇒ δµb = −δµ f

∂nb
∂µ f

∣
T,µb

∂nb
∂µb

∣
µ f ,T

⇒ δs∣T,nb =
∂s
∂n f

∣
nb ,T,µ f ,µb

δn f + δµ f

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂s
∂µ f

∣
µb ,T,n f ,nb

−
∂s
∂µb

∣
µ f ,T,n f ,nb

∂nb
∂µ f

∣
T,µb

∂nb
∂µb

∣
µ f ,T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(E.)

but at constant T, we can write δn f as

δn f ∣T =
∂n f

∂µ f
∣
µb

δµ f +
∂n f

∂µb
∣
µ f

δµb

= δµ f

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂n f

∂µ f
∣
µb ,T

−
∂n f

∂µb
∣
µ f ,T

∂nb
∂µ f

∣
T,µb

∂nb
∂µb

∣
µ f ,T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ δµ f ∣T,nb =
δn f

∂n f
∂µ f

∣
µb ,T

−
∂n f
∂µb

∣
µ f ,T

∂nb
∂µ f

∣
T,µb

∂nb
∂µb

∣
µ f ,T

(E.)

Substituting δµ f from equation (E.) into (E.),

∂s
∂n f

∣
T,nb

=
∂s
∂n f

∣
T,nb ,µ f ,µb

+

∂s
∂µ f

∣
µb ,T,n f ,nb

∂nb
∂µb

∣
µ f ,T

− ∂s
∂µb

∣
µ f ,T,n f ,nb

∂nb
∂µ f

∣
T,µb

∂n f
∂µ f

∣
T,µb

∂nb
∂µb

∣
T,µ f

−
∂n f
∂µb

∣
T,µ f

∂nb
∂µ f

∣
T,µb

(E.)





�e entropy per unit volume s is just (E −A)/T, where E is the expectation of the Hamil-

tonian (.),

ESF
ma

=πλb y + πλ f xy − νb y +

π

(

β
)

/

[

β
F/(βν̄ f ) − ν̄ f F/(βν̄ f )]

+

πλb

(νb − πλ f x) +

π

(

β
)

/

[

β
G/(βν̄b) − ν̄bG/(βν̄b)]

EN
ma

= − πλb y − πλ f xy +

π

(

β
)

/

[

β
F/(βν̄ f ) − ν̄ f F/(βν̄ f )]

+

π

(

β
)

/

[

β
G/(βν̄b) − ν̄bG/(βν̄b)]

(E.)

On the other hand, in terms of dimensionless variables,A is

ASF
ma

=

πλb

(νb − πλ f xy) + πλb y − νb y + πλ f xy

−

πβ

⎡
⎢
⎢
⎢
⎢
⎣

(

β
)

/

G/(βν̄b) + (

β
)

/

F/(βν̄ f )

⎤
⎥
⎥
⎥
⎥
⎦

AN
ma

= − πλb y − πλ f xy −

πβ

⎡
⎢
⎢
⎢
⎢
⎣

(

β
)

/

G/(βν̄b) + (

β
)

/

F/(βν̄ f )

⎤
⎥
⎥
⎥
⎥
⎦

(E.)

�en ∂s/∂n f becomes

∂s
∂n f

∣
T,nb

= βkB
∂(E −A)

∂x
+ βkB

∂(E−A)
∂ν f

∂y
∂νb

−
∂(E−A)
∂νb

∂y
∂ν f

∂[x ,y]
∂[ν f ,νb]

= kBΦ

(E.)

where Φ is a function of x, y, ν f , νb and β. Everything that is not explicitly varying above

has been kept �xed, so the derivatives, though tedious, are straightforward. E and A

used above are actually their dimensionless forms, i.e., divided byma.�e denominator

above is the determinant of a Jacobian matrix,

∂[x , y]
∂[ν f , νb]

=
∂x
∂ν f

∣
T,νb

∂y
∂νb

∣
T,ν f

−
∂x
∂νb

∣
T,ν f

∂y
∂ν f

∣
T,νb

Next, we need to calculate ∂P/∂T∣n f ,nb . Again, the pressure is a function of

P = P(T, µ f , µb , n f (T, µ f , µb), nb(T, µ f , µb))





and nb and n f being constant give

δn f =
∂n f

∂T
∣
µ f ,µb

δT +
∂n f

∂µ f
∣
µb ,T

δµ f +
∂n f

∂µb
∣
µ f ,T

δµb = 

δnb =
∂nb

∂T
∣
µ f ,µb

δT +
∂nb

∂µ f
∣
µb ,T

δµ f +
∂nb

∂µb
∣
µ f ,T

δµb = 
(E.)

and we can solve the above system for δµ f and δµb,

δµ f = δT

∂n f
∂µb

∣
µ f ,T

∂nb
∂T ∣

µ f ,µb
−

∂nb
∂µb

∣
µ f ,T

∂n f
∂T ∣

µ f ,µb

∂[n f ,nb]
∂[µ f ,µb]

δµb = δT

∂nb
∂µ f

∣
µb ,T

∂n f
∂T ∣

µ f ,µb
−

∂n f
∂µ f

∣
µb ,T

∂nb
∂T ∣

µ f ,µb

∂[n f ,nb]
∂[µ f ,µb]

(E.)

Substituting these into δP give us what we want:

δP∣n f ,nb =
∂P
∂T

∣
n f ,nb ,µ f ,µb

δT +
∂P
∂µ f

∣
n f ,nb ,µb ,T

δµ f +
∂P
∂µb

∣
n f ,nb ,µ f ,T

δµb

⇒
∂P
∂T

∣
n f ,nb

=
∂P
∂T

∣
n f ,nb ,µ f ,µb

+


∂[n f ,nb]
∂[µ f ,µb]

⎧⎪⎪
⎨
⎪⎪⎩

∂P
∂µ f

∣
T,nb ,n f ,µb

⎡
⎢
⎢
⎢
⎢
⎣

∂n f

∂µb
∣
µ f ,T

∂nb

∂T
∣
µ f ,µb

−
∂nb

∂µb
∣
µ f ,T

∂n f

∂T
∣
µ f ,µb

⎤
⎥
⎥
⎥
⎥
⎦

+
∂P
∂µb

∣
T,n f ,nb ,µ f

⎡
⎢
⎢
⎢
⎢
⎣

∂nb

∂µ f
∣
µb ,T

∂n f

∂T
∣
µ f ,µb

−
∂n f

∂µ f
∣
µb ,T

∂nb

∂T
∣
µ f ,µb

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

=
kBβ

a
∂A
∂β

+
(kB/a)β

∂[x ,y]
∂[ν f ,νb]

{x [
∂y
∂νb

∂x
∂β

−
∂x
∂νb

∂y
∂β

] + y [
∂x
∂ν f

∂y
∂β

−
∂y
∂ν f

∂x
∂β

]}

=
kB
a
Γ

(E.)

where we’ve used P = −A. Finally, we note that ∂V/∂N f ∣P,T,Nb
is just /n f = a/x, and

hence

T
∂S
∂N f

∣
P,T,Nb

=


ma

β
[Φ +

Γ
x
] (E.)

which has the correct dimension of energy (our β is dimensionless).





E. Speci�c heat

We need to evaluate ∂S/∂T∣P,N f ,Nb
, which is

∂S
∂T

∣
P,N f ,Nb

=
∂S
∂T

∣
V,N f ,Nb

+
∂S
∂V

∣
T,N f ,Nb

∂V
∂T

∣
P,N f ,Nb

= V
∂s
∂T

∣
n f ,nb

−
∂P
∂T

∣



n f ,nb
/

∂P
∂V

∣
T,N f ,Nb

(E.)

where we’ve used a Maxwell’s relation to relate ∂S/∂V to ∂P/∂T, and used

∂V
∂T

∣
P

∂T
∂P

∣
V

∂P
∂V

∣
T

= −

�e calculation of ∂s/∂T is identical to the calculation of ∂P/∂T detailed in appendix E.

above, with P substituted by s. In terms of dimensionless variables, it reads

∂s
∂T

∣
n f ,nb

= −
kBmβ

a
∂β(E −A)

∂β
+
kBβm/a

∂[x ,y]
∂[ν f ,νb]

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

[
∂y
∂νb

∂x
∂β

−
∂x
∂νb

∂y
∂β

]
∂(E −A)

∂ν f

+ [
∂x
∂ν f

∂y
∂β

−
∂y
∂ν f

∂x
∂β

]
∂(E −A)

∂νb

⎫⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎭

=kB
m
a
Θ

(E.)

We’ve already calculated ∂P/∂T∣n f ,nb in appendix E. above, so all that’s le� is to calculate

∂P/∂V.

δP∣T =
∂P
∂µ f

∣
µb ,n f ,nb

δµ f +
∂P
∂µb

∣
µ f ,n f ,nb

δµb +
∂P
∂n f

∣
µ f ,µb ,nb

δn f +
∂P
∂nb

∣
µ f ,µb ,n f

δnb (E.)

�e last two terms are zero, since P = −A, and in equilibrium ∂A/∂n f ,b = . Further,

since N f and Nb are constant, δn f ,b = −n f ,b(δV/V), which means

δn f ∣T =
∂n f

∂µ f
∣
µb ,T

δµ f +
∂n f

∂µb
∣
µ f ,T

δµb = −n f
δV
V

δnb∣T =
∂nb

∂µ f
∣
µb ,T

δµ f +
∂nb

∂µb
∣
µ f ,T

δµb = −nb
δV
V

(E.)





We can solve these equations to get δµ f ,b in terms of δV,

δµ f =
δV/V
∂[n f ,nb]
∂[µ f ,µb]

⎡
⎢
⎢
⎢
⎢
⎣

nb
∂n f

∂µb
∣
µ f ,T

− n f
∂nb

∂µb
∣
µ f ,T

⎤
⎥
⎥
⎥
⎥
⎦

δµb =
δV/V
∂[n f ,nb]
∂[µ f ,µb]

⎡
⎢
⎢
⎢
⎢
⎣

n f
∂nb

∂µ f
∣
µb ,T

− nb
∂n f

∂µ f
∣
µb ,T

⎤
⎥
⎥
⎥
⎥
⎦

(E.)

Substituting these solutions into (E.), we get

V
∂P
∂V

∣
T,N f ,Nb

=
n f

∂[n f ,nb]
∂[µ f ,µb]

⎡
⎢
⎢
⎢
⎢
⎣

nb
∂n f

∂µb
∣
µ f ,T

− n f
∂nb

∂µb
∣
µ f ,T

⎤
⎥
⎥
⎥
⎥
⎦

+
nb

∂[n f ,nb]
∂[µ f ,µb]

⎡
⎢
⎢
⎢
⎢
⎣

n f
∂nb

∂µ f
∣
µb ,T

− nb
∂n f

∂µ f
∣
µb ,T

⎤
⎥
⎥
⎥
⎥
⎦

=


ma ∂[x ,y]
∂[ν f ,νb]

{x [y
∂x
∂νb

− x
∂y
∂νb

] + y [x
∂y
∂ν f

− y
∂x
∂ν f

]}

=
κ

ma

(E.)

Finally, using (E.), (E.) and (E.) in (E.), we get

CP = T
∂S
∂T

∣
P,N f ,Nb

=
kBV
βa

[Θ −
Γ

κ
] (E.)

which has the dimension of kB as it should (recall that β is dimensionless).





APPENDIX F

“STEADY-STATE” PUMPING RATE FROMA TRAP CENTER

We need to calculate the relaxation rate of a fermi cloud in a harmonic trap if the center

is suddenly depleted. For our estimate we’ll assume that the equilibrium density pro�le

of a polarized Fermi gas in a harmonic trap is gaussian.�is is a slight approximation; for

example the D density in a cigar-shaped trap is n(r) = (mkBT)/F/(µ(r)/kBT)/π

where F/ was de�ned in (.). µ(r) is the local chemical potential µ() − mωzz/ −

mωr r/. At high T, n(r) = (m/πβ)/(eβµ()/)e−βm(ωzz+ωr r)/ is a gaussian in trap

coordinates z and r, whereas even at low T, a gaussian is not a bad approximation for

n(r) = (mµ(r))//π.�e -D axial density pro�le in a cigar-shaped trap is

n(z) = ne−βmωzz/

where n = πnc/βmωr , nc being the -D central density. Now suppose at t =  an

identical laser, focussed crosswise, is used to “bleach” the trap center of particles, so that

the density pro�le n(z, t = ) looks like �gure F..

n(z, t = ) = n (e−βmωzz/ − e−βmωr z/)

We need to �gure out how the pro�le in �gure F. relaxes to its equilibrium.

z

n
(z
,t

=
0)

Figure F.: Axial density pro�le (solid line) a�er depletion at t = . �e dashed line
represents density pro�le before depletion, while the area of the shaded region is the
particle number depleted, which comes out to a fraction ωz/ωr of the total number.

Di�usive transport in a harmonic trap is governed by a Smoluchowski equation, which

evolves a probability function p(r, t; r′, ). �is probability function can be thought of





as the probability of �nding a particle at position r and time t given its initial position

r′ at t = . In the presence of an external force F(r), the Smoluchowski equation with a

homogenous and isotropic di�usion constant D is []

∂tp(r, t; r′, ) = D� ⋅ (� − βF) p(r, t; r′, ) (F.)

where β = /kBT. If the force F is due to a harmonic potential, then the equation separates

into three orthogonal coordinates. Along the z-direction, for example, if the force is

Fz = −kz,

∂tp(z, t; z′, ) = D (∂z + βk∂zz) p(z, t; z′, )

Substituting k = mωz, this has the Green’s function

p(z, t; z′, ) =


√
πkBTS(t)/k

exp [−
(z − z′e−t/τ)



kBTS(t)/k
] (F.)

where S(t) = − e−t/τ and τ = kBT/kD, where D is the di�usion constant. Accordingly,

the density pro�le at time t will be given by

n(z, t) = ∫
∞

−∞
dz′n(z′, )p(z, t; z′, )

=n
√

⎡
⎢
⎢
⎢
⎢
⎢
⎣

exp [−z/ (DS(t)τ + e
−t/τ

mβωz
)]

√
e−t/τ +DmS(t)τβωz

−
exp [−z/ (DS(t)τ + e

−t/τ
mβωr

)]
√
e−t/τ +DmS(t)τβωr

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= n
⎡
⎢
⎢
⎢
⎢
⎣

exp [−βmωzz/] −
exp [−βmωrz/ (αS(t) + e−t/τ)]

√
αS(t) + e−t/τ

⎤
⎥
⎥
⎥
⎥
⎦

(F.)

where α = ωr/ωz, and we’ve used the pro�le in �gure F. for n(z′, ).�e density recovers

to its equilibrium value (sans the particles kicked out) in much less than time τ, as seen

in �gure F..�e density at the center of the trap behaves as

n(, t) = n
⎡
⎢
⎢
⎢
⎢
⎣

 −


√
α − e−t/τ(α − )

⎤
⎥
⎥
⎥
⎥
⎦

(F.)

For short times, this is linear in time with a slope n(α − )/τ, whereas for long times,

this asymptotes to n(α − )/α.�e t =  slope �xes the rate at which particles can �ow





t/τ=0.001

t/τ=0.005
n
(z
,t
)

t/τ=0.010

t/τ=0.050

z

t/τ=0.100

Figure F.: A�er being “bleached”, the trap center recovers very quickly.�e solid black
line is the density pro�le at di�erent times t/τ, while the shaded area is the di�erence
from the t =  bleached pro�le.

di�usively to the center of the trap.�e total number of particles kicked out is

Nkicked = ∫
∞

−∞
dzne−βmωr z/ = n ×

√
π

ωr
√
mβ

To estimate the particle �ux into the center, we can assume, therefore, that the total

particle number in the bleached region is the central density n(, t) times the “width”
√
π/ωr

√
mβ.�erefore the particle �ux into the bleached region for short times is

Ṅbleached =
n
τ

(α − )
√
π

ωr
√

βm
=

(α − )ncD(π)/

ωrαβ/ma
(F.)

where β is the dimensionless form, i.e., multiplied by /ma.�e di�usion constant from

equation (.), fed into this formula, gives

Ṅbleached =
(nca)(α − )(π)/

α(ma)β(nba)λf (π)/ωr
=
єF↑(nca)(α − )(π)/

αβ(nba)λf (π)/ωr

= ωr

√
/(α − )(nca)(ωF/ωr)



αβλf (nba)

(F.)

where we’ve used akF↑ = . Since we cannot pump faster than this rate of in�ow towards

a depleted center, this is an upper limit on our pumping rate.





APPENDIX G

FESHBACH RESONANCE

Interatomic distance

En
er

gy

|t
〉
= ↑ ↑ ↑ ↓

|s
〉
= ↑ ↑ ↓ ↑

∆µ×B

|s
〉

Figure G.: A singlet state will have many bound states, denoted by gradually fading
horizontal lines above. Feshbach resonance is the coincidence of the binding energy of a
one of those states to the asymptotic potential energy of the atoms in the unbound triplet
state ∣t⟩.�e terms ‘singlet’ and ‘triplet’ do not refer to the total angular momentum F but
only the electronic part S.�e subscripted arrows above are nuclear spins, B is an external
magnetic �eld, and ∆µ is the magnetic moment di�erence between the two states.

Feshbach resonance is a remarkable tool in atomic physics; by changing an external

magnetic �eld, inter-atomic interactions can be tuned over a wide range, from strongly

attractive through non-interacting all the way to strongly repulsive. Consider a pair of

atoms with a single electron in its valence shell (S = /) and nuclear spin I = /. �is

will have four hyper�ne states, ∣F = ,mF = ⟩ and ∣F = ,mF = ,±⟩, which will be non-

degenerate in the presence of a magnetic �eld B. Two such atoms will form a bound





molecule only when the electronic wavefunction is a singlet ∣s⟩, i.e., the atoms are in

the ∣mS = +/⟩ and ∣mS = −/⟩ states (dashed line in �gure G.). On the other hand, if

the electronic wavefunction is a triplet ∣t⟩, let’s say ∣mS = +/⟩ and ∣mS = +/⟩, they will

not form a molecule (solid line in �gure G.). Plotted against the inter-atomic distance,

the singlet state will have a deeper potential well than the triplet state, whereas when

the atoms are far apart, their energies in the presence of a B �eld will be di�erent since

the electronic magnetic moment is almost , times higher than the nuclear magnetic

moment.

States ∣s⟩ and ∣t⟩ are related by an electronic and a nuclear spin �ip. �e coupling

between I and S can be written

I ⋅ S =


[I+S− + I−S+] + IzSz

which mixes the two states, creating an avoided level crossing as shown in �gure G..

�us when two atoms, initially in the triplet state, approach each other, there is a �nite

probability for them to �ip two spins and end up in the singlet state, following the solid

curve in the �gure. If the initial potential energy in ∣t⟩ is equal to a bound state energy

in ∣s⟩, then this probability is very high, and a “Rabi �op” between the two states takes a

very long time.�e system is said to be on resonance.

On resonance, two free atoms spend a lot of time close to each other in a “bound”

molecular state (with Eb = ), increasing the e�ect of their interaction. If, on the other

hand, the system is slightly detuned from resonance, the “Rabi �ops” are more frequent,

and interaction e�ects decrease. In e�ect, tuning the system close to a Feshbach reso-

nance is a way of controlling the interaction energy between atoms. In the limit of a

dilute gas of atoms, the interaction energy of the gas, the two-body scattering length and

the proximity to a Feshbach resonance can be connected using a simple two-particle scat-

tering Hamiltonian.





G. Scattering theory

Consider a Hamiltonian with only two-particle point interactions between fermions1:

H =∑
k,σ

єkψ†k,σψk,σ +U ∑
k,p,q

ψ†k

+p,↑ψ

†
k

−p,↓ψ k


−q,↓ψ k


+q,↑ (G.)

Since thisHamiltonian conserves totalmomentum, the totalmomenta for the two-particle

initial and �nal states must be equal. Let’s say this total momentum is q. Diagramatically,

a two-particle scattering matrix can be drawn for this potential:

� =� +� +� +⋯

=� +�
(G.)

where the double wiggly line is for the scattering matrix between ψ†p+q/,↑ψ
†

−p+q/,↓ ∣vac⟩

and ψ†p′+q/,↑ψ
†

−p′+q/,↓ ∣vac⟩, the dashed line is U, and the thin solid lines are fermion

propapagators. If the total energy of the incoming particles (as well as the outgoing par-

ticles) be ω then the above diagram can be summarized in the Dyson equation

T (
q

+ p,

q

− p,

q

+ p′,

q

− p′;ω) (G.)

= U [ +∑
k,ν
G↑ (

q

+ k,

ω

+ ν)G↓ (

q

− k,

ω

− ν)T (

q

+ k,

q

− k,

q

+ p′,

q

− p′;ω)]

where G−↑,↓(p,ω) = ω− єp + iε. In terms of the two-particle propagator G(q,ω) de�ned

by

G(q,ω) =∑
k,ν
G↑ (

q

+ k,

ω

+ ν)G↓ (

q

− k,

ω

− ν) (G.)

the scattering matrix (which depends only on q and ω as well) is given by

T(q,ω) =



U
−G(q,ω)

(G.)

1Point interaction between similar spins is forbidden by Pauli exclusion. If thesewere Bosons, we could
have all sorts of scattering between di�erent spins. While that theory is notmore complicated in principle,
we work out the Fermion case for a concrete example.





G can be evaluated using some contour integration:

G(q,ω) = −V ∫ dk
(π) ∫

∞

−∞

dν
π



ν − (є q

+k −

ω

− iε)



ν − (ω

− є q


−k + iε)

= −V ∫ dk
(π)


ω − є q


−k − є q


+k + iε

(G.)

�is integral is divergent due to the contribution from large k, so we subtract the diver-

gence and de�ne

G(q,ω) = −V ∫ dk
(π)

⎡
⎢
⎢
⎢
⎢
⎣


ω − є q


−k − є q


+k + iε

+

єk

⎤
⎥
⎥
⎥
⎥
⎦

(G.)

and this “convergence term” gets added to /U as well, and we call the whole thing the

renormalized U which is physically relevant. Doing another contour integral, we get

G(q,ω) = −
imV
π

√
mω − q (G.)

Now suppose the incoming particles have momenta q

+ k and q


− k. �en ω = (q +

k)/m, and we see that the scattering matrix only depends on the relative momentum:

T(k) =



U
+ i mVk

π

(G.)

Now the s-wave phase shi� δ is related to the on-shell scattering matrix by

e iδ
k
sin δ ∝ T(k) ⇒ tan δ = −

mVUk
π

(G.)

�e s-wave scattering length a is given by

lim
k→

k cot δ = −

a
= −

π
mVU

⇒ a =
mVU
π

(G.)

�is connects a macroscopically measurable scattering length a with a microscopic pa-

rameter U. Further, we know that bound states appear as poles of T(q = ,ω = −Eb):

mV
πa

−
mV
π

√
mEb =  ⇒ Eb =


ma

(G.)

which also says that a bound state �rst appears when a →∞. Since we know that a bound

state appears at a Feshbach resonance, the condition for Feshbach resonance is therefore

a =∞. Next we will see how this can be achieved using a magnetic �eld.





G. E�ect of a magnetic �eld

In the presence of a magnetic �eld B, the up and down spins will have di�erent energies.

Further, near a resonance, we should have a bosonic bound state (denoted by the operator

ϕ) with twice the mass of the fermionic particles, and a coupling between the two states

with strength g []:

H =∑
k,σ

єkψ†k,σψk,σ +∑
k

(


єk + ν)ϕ†kϕk +U ∑

k,p,q
ψ†k

+p,↑ψ

†
k

−p,↓ψ k


−q,↓ψ k


+q,↑

+ g∑
k,p

[ϕ†kψ k

+p,↑ψ k


−p,↓ + ψ†k


−p,↓ψ

†
k

+p,↑ϕk]

(G.)

where ν is the energy detuning between the bosonic pair and two free fermions2. �e

scattering matrix will now have extra terms corresponding to formation and dissociation

of pairs:

� =� +� +� +� +⋯

+� +� +⋯

=� +	 +
 +�

(G.)

where the double wiggly line is the full T-matrix, the single wiggly line is a boson line

corresponding to ϕ, the dashed straight line is the interaction U, the dots correspond to

g, and the solid straight lines are fermion lines for ψ.�e resulting Dyson equation is

T (
q

+ p,

q

− p,

q

+ p′,

q

− p′;ω)

= [U + gGb(q,ω)] × [ +∑
k,ω′
G↑ (

q

+ k,

ω

+ ω′)G↓ (

q

− k,

ω

− ω′) ×

T (
q

+ k,

q

− k,

q

+ p′,

q

− p′;ω)]

(G.)

2Note that the bosonic pair is actually inert to amagnetic �eld, and in fact the fermionic energies should
be shi�ed, for example єk,↑ = єk − µ(B − B) and єk,↓ = єk + µ(B − B). A canonical transformation is
typically performed to shi� the e�ect of the magnetic �eld on to the Bosonic part [, ] for handling
convenience that will become apparent below.





where Gb is the propagator for the bosonic pair. In structure, this is very similar to equa-

tion (G.), and again T depends only on the total energy ω and total momentum q.�e

only di�erence is that U is shi�ed:

U → U +
g

ω − єq/ − ν + iε
(G.)

so that the scattering matrix is

T(q,ω) =



U+gGb(q,ω) −G(q,ω)

(G.)

Again, using ω = (q + k)/m we get

a = − lim
k→

tan δ
k

=
mV
π

[U −
g

ν
] (G.)

If we callmVU/π = abg, as in the scattering length in the absence of a resonance (g = ),

and note that the detuning ν ∝ B − B where B is the �eld on resonance, we can write

a = abg ( +
∆B
B − B

) (G.)

where the characteristic width of a resonance ∆B depends on things such as g, abg, m,

etc. �is tells us that a Feshbach resonance (a → ∞, Eb = ) can be induced by tuning

an external magnetic �eld. �e binding energy is again found by looking for the pole

of T(,−Eb). �is will in general have three solutions, and the physical one will go to

zero as ν → . While the full solution is messy, two of its limits are well-de�ned: for

ν → , the resonance term g will dominate U, whereas far away from resonance, U is

more important than g (see, e.g. [] or []).

Eb
ν→
ÐÐ→ (B − B) × const. Eb

ν→∞
ÐÐ→ ∆µ(B − B) (G.)

�e binding energy is not linear in B − B close to the resonance because a molecule is

dressed up by �uctuations that take it to a dissociated pair and back. To �nally relate a

Feshbach resonance to the strength of interactions, we note that the interaction energy





per unit volume in terms of the particle density n is []

Eint ∼
an

m
(G.)

which means that by tuning an external magnetic �eld, experimentalists can tune the

interaction energy relative to the kinetic energy (∼ n//m per unit volume), taking it

all the way from strongly attractive (an/ ≪ −) to strongly repulsive (an/ ≫ ) and

everything in between. �is is dramatically di�erent from other condensed matter sys-

tems; we cannot, for example, just change the electron-electron interaction at the heart

of superconductivity. As we shall see in the rest of this thesis, this tunable interaction has

allowed us to use systems with Feshbach resonances to probe regimes previously consid-

ered unreachable.





APPENDIX H

EVALUATION OF THE SELF ENERGY

�e summation over Matsubara frequencies in (.) can be converted into a contour

integral with an extra Fermi function in the integrand.�e sum can bewritten as a special

case of a more general Matsubara sum


β∑iωn

h(iωn)

where the fermionic Matsubara frequencies are ωn = (n + )π/β. Note that the Fermi-

Dirac function f (z) = (eβz+)− has poles at precisely zn = iωn (blue circles in �gureH.),

with residue −/β at every pole. Hence, the above sum can be written


β∑iωn

h(iωn) = −∑
n
h(zn)Resz→zn

f (z) (H.)

If all the poles and branch cuts (red stars and thick orange lines, respectively, in �gureH.)

of the function h(z) are on the real axis1, then this sum is

−∑
n
Res
z→zn

f (z)h(z) =

πi ∫∮C′

dz f (z)h(z) (H.)

where C′ is the dashed blue contour in �gure H.. Since the function f (z) goes to zero

exponentially for large ∣z∣ away from the imaginary axis, the dashed blue contour C′ can

be deformed into the dotted red contour C′′. Further, since f (z) does not have a pole on

the real axis, contour C′′ can be deformed into the solid green contour C in �gure H. to

include the origin. Hence a Matsubara sum turns into a contour integral


β∑iωn

h(iωn) =

πi ∫∮C

dz f (z)h(z) (H.)

�is contour integral will only pick up the poles and branch cuts of h(z) on the real axis.

If the Matsubara sum is over bosonic frequencies, the Fermi-Dirac function is replaced

by the Bose-Einstein function.

1For r > rc , i.e., when the normal �uid is stable, all the poles of Θ̃(q, z) are real. Also, all the poles of
the Fermion Green’s function in (.) are obviously real too. So our h satis�es this constraint.





FigureH.: If the poles (red stars) and branch cuts (thick orange lines) of h(z) are all on
the real axis, then we can sum h(z) over zn = iωn (blue circles) by integrating h(z) f (z)
along the dashed blue contour. �at contour is equivalent to the dotted red contour,
which can be deformed into the solid green contour.

To use this recipe for summing (.), we have to integrate the summand of (.)

times a Fermi-Dirac function over the straight line contours (solid blue anddashed green)

of �gure H.. But at T = , f (z) =  for R(z) <  and f (z) =  for R(z) > , so only

the solid blue contour contributes in �gure H. and the green dashed contour does not

contribute. Unless there is a pole at the origin, we can close the blue contour through the

origin.

In eq. (.) we shi� the momentum so that the sum of momenta is an argument

of G−σ, and then we can do the angular integral. We also restrict ourselves to unitarity,

where (ask↑F)− →  in eq. (.). Again expressing everything in terms of dimensionless





Im(z)

Re(z)

Figure H.: �e contour over which to
evaluate (.).�e green dashed part does
not contribute because f (z)→  at T → .

Im(z)

Re(z)

FigureH.:�emodi�ed contour for eval-
uating (H.).�e thick red line is where the
branch cut and poles are.

variables (k is scaled by k↑F), we get

m

(k↑F)

Σ↓(k, ) =

i
π ∫

∞


q dq ∫∮

C

dz
Θ̃(q, z)


k
log [

(z + ) − (k − q)

(z + ) − (k + q)
]

m

(k↑F)

Σ↑(k, ) =

i
π ∫

∞


q dq ∫∮

C

dz
Θ̃(q, z)


k
log [

(z + r) − (k − q)

(z + r) − (k + q)
]

(H.)

where C is the solid blue contour in �gure H.. At r = rc, Θ̃(q, z) has a pole for a certain

q at z =  according to the modi�ed�ouless criterion of (.). For r < rc, the pole is on

the positive real axis, and the blue contour can be closed through the origin.�e location

of the branch cuts and poles of the integrands in (H.) are shown in �gure H. by a thick

red line. Except for the pole from (.) (which does not count), all singularities are on

the negative real axis, and the singularity farthest to the le� is the branch cut from the

logarithm.�is branch cut starts at

zmin =


q −



( + r) (H.)

�ere may be a pole forR(z) <  as well, but that lies on the red line as well.�e end of

the branch cut is to the le� of the origin; we can therefore deform the solid blue contour of





�gure H. into the pie-shaped blue contour of �gure H.. We numerically integrate over

this pie-shaped contour, �nding that the integrands are well-behaved. �is should be

contrasted with the contour in �gure H., over which the integrand is highly oscillatory.

�e self energies of the two species at their respective Fermi surfaces are given by Σ↓(r)

and Σ↑() from eqs. (H.).�e results are shown in �gure . in the main text.
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